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This Manual Update should be appended to the Third-Generation TMS320 User’s Guide. Changes
should be made as indicated on the designated pages.

Page Change or Add
2-2 Table 2-1:
Line Function (Now) Function (Should Be)
1 X11 XA11
2 X12 XA12
5 X0D2 XD2
20 10A5 XAB
26 10D23 XD23
27 10D24 XD24
28 10D25 XD25
28 VSUBS SUBS
29 10D26 XD26
30 10D27 XD27
31 10D28 XD28
32 10D29 XD29
33 10D30 XD30
34 10D31 XD31
35 IORDY XRDY
2-6 Table 2-2. Insert the following at the end of the table.
LOCATOR {1 PIN)
NONE r 1 l NC 4L Reserved. See Table 2-1 and Figure 2-1.
7-9 Line 7: src should be dst.
A-5 Table A-5: Characteristics (13), {14), (15), (16}, {(17), and (18} change (l0) to (X)
in name and description.
A-6 Figure A-4: Change (IO)R/W to (X)R/W, (I0)A to (X)A, (I0)D to (X)D, and
(IO)RDY to (X)RDY.
A-6 Table A-6: All characteristics change {10) to (X) in name and description.
A-7 Figure A-5: Change (IO)JR/W to (X)R/W, (I0}A to (X)A, (I0)D to (X)D, and
(IO)RDY to (X)RDY.
A-8 Figure A-6: Change IOR/W to XR/W, I0A to XA, 10D to XD, and IORDY to
XRDY. Change (M)STRB in title to IOSTRB.
A-9 Table A-7: Characteristics (22), {14.1), (15.1), {16.1), (17.1), and (18.1) change IO

to X in name and description.
A-9 Table A-8: All characteristics change 10 to X in name and description.

The changes shown in this Manual Update will be included in the next revision of the Third-Generation
TMS320 User’s Guide.
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IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. Tl advises its customers to obtain the latest version of the relevant in-
formation to verify, before placing orders, that the information being relied
upon is current.

TI warrants performance of its semiconductor products to current specifica-
tions in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent T| deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

T1 assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does T| warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec-
tual property right of Ti covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used.
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Section 1

Introduction

The TMS320C30 (third-generation) Digital Signal Processor (DSP) is a
high-performance CMOQOS 32-bit device in the TMS320 family of single-chip
digital signal processors. Since 1982 when the TMS32010 was introduced,
the TMS320 family has established itself as the industry standard for digital
signal processing. Powerful instruction sets, high-speed number-crunching
capabilities, and innovative architectures have made this high-performance
family of processors ideal for DSP applications.

The TMS320 family consists of three generations of processors: TMS320C1x,
TMS320C2x, and TMS320C3x (see Figure 1-1). The family has expanded to
include enhancements of earlier generations and more powerful new gener-

ations of digital signal processors.

e
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Figure 1-1. TMS320 Device Evolution
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This document discusses the third-generation device, TMS320C30, within the
TMS320 family. The 60-ns cycle time of the TMS320C30 allows it to execute
operations at a performance rate previously available only on a supercomputer.
Even higher performance is gained through its large on-chip memories, con-
current DMA controller, and instruction cache.

This section presents the following major topics:

General Description (Section 1.1 on page 1-3)

Key Features (Section 1.2 on page 1-4)

Typical Applications (Section 1.3 on page 1-5)

How To Use This Manual (Section 1.4 on page 1-6)

References (Section 1.5 on page 1-8)



Introduction - General Description

1.1 General Description

The TMS320’s internal busing and special digital signal processing (DSP)
instruction set provide speed and flexibility.This combination produces a pro-
cessor family capable of executing up to 33 MFLOPS (million floating-point
operations per second). The TMS320 family optimizes speed by implementing
functions in hardware that other processors implement through software or
microcode. This hardware-intensive approach provides the design engineer
with power previously unavailable on a single chip.

The TMS320C30, the third-generation device in the TMS320 family, can
perform parallel multiply and ALU operations on integer or floating-point data
in a single cycle. The processor also possesses a general-purpose register file,
program cache, dedicated auxiliary register arithmetic units (ARAU), internal
dual-access memories, one DMA channel supporting concurrent 1/0, and a
short machine-cycle time. High performance and ease of use are achieved
through greater parallelism, greater accuracy, and general-purpose features.

General-purpose applications are greatly enhanced by the large address space,
“multiprocessor interface, internally and externally generated wait states, two
timers, two serial ports, and multiple interrupt structure. The TMS320C30
supports a wide variety of system applications from host processor to dedi-
cated coprocessor.

The emphasis on total system cost has resulted in a less-expensive processor
that can be designed into systems currently using costly bit-slice processors.
High-level language is more easily supported through a register-based archi-
tecture, large address space, powerful addressing modes, flexible instruction
set, and support of floating-point arithmetic.
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1.2 Key Features
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Some key features of the TMS320C30 are listed below.

® 60-ns single-cycle instruction execution time
—  33.3 MFLOPS (million floating-point operations per second)
- 16.7 MIPS (million instructions per second)

One 4K x 32-bit single-cycle dual-access on-chip ROM block
Two 1K x 32-bit single-cycle duai-access on-chip RAM blocks
64 x 32-bit instruction cache

32-bit instruction and data words, 24-bit addresses

40/32-bit floating-point/integer multiplier and ALU

32-bit barrel shifter

Eight extended-precision registers (accumulators)

register arithmetic units

CPU operation

Integer, floating-point, and logical operations

Two- and three-operand instructions

Parallel ALU and multiplier instructions in a single cycle
Block repeat capability

Zero-overhead loops with single-cycle branches
Conditional calls and returns

Interlocked instructions for multiprocessing support
Two serial ports to support 8/16/32-bit transfers

Two 32-bit timers

Two general-purpose external flags, four external interrupts
180-pin grid array (PGA) package; 1 p m CMOS

Two address generators with eight auxiliary registers and two auxiliary

On-chip Direct Memory Access (DMA) controller for concurrent 1/0 and
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1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those
complex applications. Table 1-1 lists typical TMS320 family applications.

Table 1-1. Typical Applications of the TMS320 Family

GENERAL-PURPOSE DSP

GRAPHICS/IMAGING

INSTRUMENTATION

Digital Filtering
Convolution
Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Rotation

Robot Vision

Image Transmission/
Compression

Pattern Recognition
Image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

VOICE/SPEECH

CONTROL

MILITARY

Voice Mail

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech
Neural Networks

Disk Control

Servo Control
Robot Control

Laser Printer Control
Engine Control
Motor Control
Kalman Filtering

Secure Communications
Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems
Sensor Fusion

TELECOMMUNICATIONS

AUTOMOTIVE

Echo Cancellation
ADPCM Transcoders
Digital PBXs

Line Repeaters
Channel Multiplexing

FAX

Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

Power Tools

Digital Audio/TV
Music Synthesizer
Toys and Games
Solid-State Answering
Machines

1200 to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
CONSUMER INDUSTRIAL MEDICAL

Radar Detectors Robotics Hearing Aids

Numeric Control
Security Access
Power Line Monitors
Visual Inspection
Lathe Control

CAM

Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

MR Imaging
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1.4 How To Use This Manual

The purpose of this user’'s guide is to serve as a reference book for the
TMS320C30 digital signal processor. This document is designed to provide
information that assists managers and hardware/software engineers in appli-
cation development. The first group of sections provides specific information
about the architecture and hardware operation of the device. Later sections
describe the software operation. Specific software and hardware applications
are provided in Sections 12 and 13, respectively. Electrical specifications and
mechanical data can be found in the data sheet (Appendix A).
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The foliowing table lists each section and briefly describes the section con-

tents.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Section 7.

Section 8.

Section 9.

Section 10.

Section 11.

Section 12,

Pinout and Signal Descriptions. Drawing of the PGA

package for the TMS320C30. Functional listing of the
signals, their pin locations, and descriptions.

Architectural Overview. Functional block diagram.
TMS320C30 design description, hardware components,
and device operation. Instruction set summary.

CPU Registers, Memory, and Cache. Description of the
registers in the CPU register file. Memory maps provided
and instruction cache architecture, algorithm, and control
bits explained.

Data Formats and Floating-Point Operations. Description
of signed and unsigned integer and floating-point formats.
Discussion of floating-point multiplication, addition, sub-
traction, normalization, rounding, and conversions.

Addressing. Operation, encoding, and implementation of
addressing modes. Format descriptions. System stack
management.

Program Flow Control. Software control of program flow
with repeat modes and branching. Interlocked operations.
Reset and interrupts.

External Bus Operation. Description of primary and expan-
sion interfaces. External interface timing diagrams. Pro-
grammable wait-states and bank switching.

Peripherals. Description of the DMA controller, timers, and
serial ports.

Pipeline Operation. Discussion of the pipelining of oper-
ations on the TMS320C30.

Assembly Language Instructions. Functional listing of in-
structions. Condition codes defined. Alphabetized indi-
vidual instruction descriptions with examples.

Software Applications. Software application examples for
the use of various TMS320C30 instruction set features.
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Section 13. Hardware Applications. Hardware design techniques and [
application examples for interfacing to memories, periph-
erals, or other microcomputers/microprocessors.

Four appendices are included to provide additional information.

Appendix A. TMS320C30 Data Sheet. Electrical specifications, timing,
and mechanical data.

Appendix B. Development Support/Part Order Information. Listings of
the hardware and software available to support the
TMS320C30 device.

Appendix C. Instruction Opcodes. List of the opcode fields for all the
TMS320C30 instructions.
Appendix D. Quality and Reliability. Discussion of Texas Instruments

quality and reliability criteria for evaluating performance.
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1.5 References
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The following reference list contains useful information regarding functions,
operations, and applications of digital signal processing. These books also
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gital control theory, and alphabetized by author.
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Section 2

Pinout and Signal Descriptions

The TMS320C30 (third-generation TMS320) digital signal processor is
available in a 180-pin grid array (PGA) package. The pinout of this package
(Figure 2-1), and a functional listing of the signals, pin locations, and de-
scriptions are provided in this section. Electrical specifications and mechanical

data are given in the data sheet (Appendix A).

0000000000000 00 |

PV Z28rX IO TMOUO® D
00000000 OCBOCGBOOSOSS
[ X N X ]

Figure 2-1. TMS320C30 Pin Assignments
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Pinout and Signal Descriptions

Table 2-1. TMS320C30 Pin Function Assignments

Function | Pin Function | Pin || Function | Pin |} Function | Pin || Function} Pin
A0 F15 EMUO F14 D19 A9 ACK G1 X1 D14
Al G12 EMU1 E15 D20 B9 NTO H2 X12 E13
A2 G13 CLKRO N4 D21 c9 T1 H1 XDo Q4
A3 G14 CLKR1 L4 D22 A10 NT2 J1 XD1 P5
A4 G15 CLKXO0 M5 D23 D9 NT3 J2 X0D2 N6
A5 H15 CLKX1 N2 D24 B10 RSVO J3 Xb3 Q5
A6 H14 DO Cc4 D25 Al1 RSV1 J4 XD4 P6
A7 J15 D1 D5 D26 C10 RSV2 K1 XD5 M7
A8 J14 D2 A2 D27 B11 RSV3 K2 Xb6 Q6
A9 J13 D3 A3 D28 A12 RSV4 L1 XD7 N7
A10 K15 D4 B4 D29 D10 RSV5 K3 XD8 P7
Al1 J12 D5 C5 D30 C11 RSV7 K4 XD9 Q7
A12 K14 D6 D6 D31 B12 RSV9 L3 XD10 P8
A13 L15 D7 A4 DRO Q1 RSV10 M2 XD11 Qs
Atl4 K13 D8 B5 DR1 N1 XAO0 A13 XD12 Q9
A15 L14 D9 C6 DX0 Q3 XA1 Al4 XD13 P9
A16 M15 || D10 AS DX1 P2 XA2 D11 XD14 N9
A17 K12 D11 B6 FSRO P3 XA3 c12 XD15 Q10
A18 L13 D12 D7 FSR1 M3 XA4 B13 XD16 M9
A19 M14 || D13 A6 FSXO0 Q2 I0AS A15 XD17 P10
A20 N15 D14 C7 FSX1 P1 XA6 B15 XD18 Q11
A21 M13 D15 B7 H1 B3 XA7 Cc14 XD19 N10
A22 L12 D16 A7 H3 Al XA8 E12 XD20 P11
A23 N14 D17 A8 HOLD F3 XA9 D13 XD21 Q12
EMUS C1 D18 B8 HOLDA E2 XA10 C15 XD22 M10
10D23 N11 LOCATOR | E5 TCLK1 N5 ADVDD D12 VSS N8
10D24 P12 EMU4 F12 VBBP D3 ADVDD H11
10D25 Q13 MC/MP D15 VSUBS E4 DDVDD D4 CVsSSs B2
10D26 Q14 MSTRB E3 X1 Cc2 DDVDD E8 CVSssS P14
10D27 M11 EMU6 M6 X2 B1 10DVDD L8 DVSS C3
i0D28 N12 RDY E1 XFO G2 10DVDD M12 |} DVSS C13
10D29 P13 RESET F1 XF1 G3 MDVDD H5 DVSS N3
10D30 Q15 R/W G4 PDVDD M4 DVSS N13
10D31 P15 EMU2 F13 VDD D8 IVSS B14
IORDY D2 EMU3 E14 vDD H4 VSS c8
IOR/W D1 STRB F2 VDD H12 VSS H3 RSV6 L2
IOSTRB F4 TCLKO P4 vDD M8 VSS H13 RSV8 M1
NOTE

1) ADVDD, DDVDD, IODVDD, MBVDD, and PDVDD pins (D4, D12, E8, H5, H11, L8, M4, and M12)
are on a common plane internal to the device.

2) VDD pins (D8, H4, H12, and M8) are on a common plane internal to the device.

3) VSS, CVSS, and INSS pins (B2, B14, C8, H3, H13, N8, and P14) are on a common plane internal
to the device.

4) DVSS pins (C3, C13, N3, and N13) are on a common plane internal to the device.
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Pinout and Signal Descriptions

2.1 Signal Descriptions

The signal descriptions for the TMS320C30 device in the microprocessor

mode are provided in this section. Table 2-2 lists each signal, the number of e
pins, function, and operating mode(s), i.e., input, output, or high-impedance -
state as indicated by I, O, or Z. All pins labelled ‘NC’ are not to be connected

by the user. A line over a signal name (e.g., RESET) indicates that the signal :
is active low true at a logic ‘0’ level. The signals in Table 2-2 are grouped
according to function.

Table 2-2. TMS320C30 Signal Descriptions

SIGNAL | #PINS | 1/0/zt | DESCRIPTION
PRIMARY BUS INTERFACE (61 PINS)

D(31-0) 32 1/0/2 32-bit data port of the primary bus interface.

_A(_23-0) 24 0/Z 24-bit address port of the primary bus interface.

1 0/zZ Read/write signal for primary bus interface. This pin is high
when a read is performed and low when a write is performed
over the parallel interface.

0/zZ External access strobe for the primary bus interface.

I Ready signal. This pin indicates that the external device is
prepared for a primary bus interface transaction to complete.
As long as RD% is a logic high, the data and address buses
of the primary bus interface remain valid.

Hold signal for primary bus interface. When HOLD is a logic
low, any ongoing transaction is completed. The A(23-0),
D(31-0), STRB,, and R/W signals are placed in a high-im-
pedance state, and all transactions over the primary bus in-
terface are held until HOLD becomes a logic high.

Hold acknowledge signal for primary bus interface. This
signal is generated in response to a logic low on HOLD. it
signals that A(23-0), D(31-0), STRB, and R/W are placed
in a high-impedance state and all transactions over the bus
will be held. HOLDA will be high in response to a logic
high of HOLD.

EXPANSION BUS INTERFACE (49 PINS)
XD (31-0) 32 1/0/Z 32-bit data port of the expansion bus interface.
XA (12-0) 13 0/Z 13-bit address port of the expansion bus interface.

XR/W 1 /2 Read/write signal for expansion bus interface. When a read
is performed, this pin is held high; when a write is per-
formed, this pin is low.

MSTRB 1 0/Z External memory access strobe for the expansion bus inter-
face.

[OSTRB 1 0/Z External I/0O access strobe for the expansion bus interface.

XRDY 1 I Ready signal. This pin indicates that the external device is
prepared for an expansion bus interface transaction to
complete. As long as XRDY is high, the data and address
buses of the expansion bus interface remain valid.
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t Input, Output, High-impedance state.
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Table 2-2. TMS320C30 Signal Descriptions (Continued)

SIGNAL | #PINS | 1oszt | DESCRIPTION
CONTROL SIGNALS (9 PINS)

RESET 1 I Reset. When this pin is a logic low, the device is placed in
the reset condition. When reset becomes a logic high, exe-
cution begins from the location specified by the reset vector.

TNT(3-0) 4 1 External interrupts.

IACK 1 o Interrupt acknowledge signal. IACK goes low during exe-
cution of an IACK instruction. This can be used to indicate
the beginning or end of an interrupt service routine.

MC/MP 1 I Microcomputer/microprocessor mode pin.

XF(1-0) 2 1/0 External flag pins. These pins are formatted as 1/0 through
a program instruction, and latched internally when used as
output pins. They are used as general-purpose 1/0 pins or
to support interlocked processor instructions.

SERIAL PORT 0 SIGNALS (6 PINS)

CLKX0 1 1/0 Serial port 0 transmit clock. This pin serves as the serial shift
clock for the serial port O transmitter.

DXO0 1 0/Z Data transmit output. Serial port O transmits serial data on
this pin.

FSX0 1 110 Frame synchronization pulse for transmit. The FSXO0 pulse
initiates the transmit data process over pin DXO.

CLKRO 1 170 Serial port O receive clock.This pin serves as the serial shift
clock for the serial port O receiver.

DRO 1 ! Data receive. Serial port O receives serial data via the DRO
pin.

FSRO 1 | Frame sychronization pulse for receive. The FSRO pulse ini-
tiates the receive data process over DRO.

SERIAL PORT 1 SIGNALS (6 PINS)

CLKX1 1 1/0 Serial port 1 transmit clock. This pin serves as the serial shift
clock for the serial port 1 transmitter.

DX1 1 0/Z Data transmit output. Serial port 1 transmits serial data on
this pin.

FSX1 1 1/0 Frame synchronization pulse for transmit. The FSX1 pulse
initiates the trAnsmit data process over pin DX1.

CLKR1 1 /0 Serial port 1 receive clock. This pin serves as the serial shift
clock for the serial port 1 receiver.

DR1 1 | Data receive. Serial port 1 receives serial data via the DR1
pin.

FSR1 1 | Frame sychronization pulse for receive. The FSR1 pulse ini-
tiates the receive data process over DR1.

t Input, Output, High-impedance state.
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Table 2-2. TMS320C30 Signal Descriptions (Continued)

SIGNAL | #PINs | oszt | DESCRIPTION
TIMER 0 SIGNALS (1 PIN)

TCLKO 1 i70 Timer clock. As an input, TCLKO is used by timer O to count
external pulses. As an output pin, TCLKO outputs puises
generated by timer 0.

TIMER 1 SIGNALS (1 PIN)

TCLK1 1 1/0 Timer clock. As an input, TCLK1 is used by timer 1 to count
external pulses. As an output pin, TCLK1 outputs pulses
generated by timer 1.

SUPPLY AND OSCILLATOR SIGNALS (29 PINS)

Vpp(3-0) 4 1 Four +5 V supply pins.

10DVpp(1.0) 2 | Two +5 V supply pins.

ADVpp(1.0) 2 I Two +5 V supply pins.

PDVpp 1 | One +5 V supply pin.

DDVpp(1.0) 2 | Two +5 V supply pins.

MDVpp 1 ! One +5 V supply pin.

Vgs(3-0) 4 | Four ground pins.

DVgg(3-0) 4 | Four ground pins.

CVgs(1,0) 2 | Two ground pins.

IVss 1 I One ground pin.

Vasp 1 NC VBB pump oscillator output.

SuUBS 1 | Substrate pin. Tie to ground.

X1 1 0 Qutput pin from the internal oscillator for the crystal. If a
crystal is not used, this pin should be left unconnected.

X2/CLKIN 1 | Input pin to the internal oscillator from the crystal or a clock.

H1 1 0 External H1 clock. This clock has a period equal to twice
CLKIN.

H3 1 0 g:l(-tzmal H3 clock. This clock has a period equal to twice

t Input, Output, High-impedance state.
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Table 2-2. TMS320C30 Signal Descriptions (Concluded)

SIGNAL | #PINS | 1o/zt | DESCRIPTION
RESERVED (18 PINS)
EMU(0-2) 3 ! Reserved. Use pull-ups to +5 volts. See Section 13.5
EMU3 1 0 Reserved. See Section 13.5
EMU4 1 | Reserved. Tie to +5 volts.
EMU(5,6) 2 NC Reserved.
RSV(0-10) 11 I Reserved. Tie to +5 volts.

t Input, Output, High-impedance state.

The user must follow the connections specified for the reserved pins. All pull-up resistors must be 20 k
ohms. All +5 volt supply pins must be connected to a common supply plane and all ground pins must
be connected to a common ground plane.
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Section 3

Architectural Overview

Emphasis on hardware and software system solutions to demanding arithmetic
algorithms has resulted in the TMS320C30 architecture shown in Figure 3-1.
High system performance is achieved through the accuracy and precision of
the floating-point units, large on-chip memory, a high degree of parallelism,
and the DMA controller.

This section provides an architectural overview of the TMS320C30 processor.
Major areas of discussion are listed below.

o

Central Processing Unit (CPU) (Section 3.1 on page 3-3)
- Floating-point/integer multiplier

—  ALU for floating-point, integer, and logical operations
—  Auxiliary register arithmetic units (ARAUs)

—  CPU register file

Memory Organization (Section 3.2 on page 3-7)
- RAM, ROM, and cache

- Memory maps

- Memory addressing modes

- Instruction set summary

Internal Bus Operation (Section 3.3 on page 3-18)
External Bus Operation (Section 3.4 on page 3-19)

Peripherals (Section 3.5 on page 3-20)
—  Timers
- Serial ports

Direct Memory Access (DMA) (Section 3.6 on page 3-21)
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Architectural Overview - Central Processing Unit (CPU)

3.1 Central Processing Unit (CPU)

The TMS320C30 has a register-based CPU architecture. The CPU consists
of the following components:

° Floating-point/integer multiplier

-] ALU for performing arithmetic (floating-point, integer)and logical oper-

ations
32-bit barrel shifter

Internal buses (CPU1/CPU2 and REG1/REG2)

Auxiliary register arithmetic units (ARAUSs)

CPU register file.

Figure 3-2 shows the various CPU components that are discussed in the
succeeding subsections.
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Architectural Overview - Central Processing Unit (CPU)

3.1.1 Multiplier

The multiplier performs single-cycle multiplications on 24-bit integer and
32-bit floating-point values. The TMS320C30 implementation of floating-
point arithmetic allows for floating-point operations at fixed-point speeds via
a 60-ns instruction cycle and a high degree of parallelism. To gain even higher
throughput, a multiply and ALU operation can be performed in a single cycle

by using parallel instructions. 3
When performing floating-point multiplication, the inputs are 32-bit float-
ing-point numbers, and the result is a 40-bit floating-point number. When
performing integer multiplication, the input data is 24 bits and yields a 32-bit

result. Refer to Section 5 for detailed information on data formats and float-
ing-point operation.

3.1.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical,
and 40-bit floating-point data, including single-cycle integer and floating-
point conversions. Results of the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The barrel shifter is used to shift up to 32
bits left or right in a single cycle.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from me-
mory and two operands from the register file, thus allowing parallel multiplies
and adds/subtracts on four integer or floating-point operands in a single cycle.

3.1.3 Auxiliary Register Arithmetic Units (ARAUs)

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IR0
and IR1), and circular and bit-reversed addressing. Refer to Section 6 for a
description of addressing modes.

3.1.4 CPU Register File

The TMS320C30 provides 28 registers in a multiport register file that is tightly
coupled to the CPU. All of these registers can be operated upon by the mul-
tiplier and ALU, and can be used as general-purpose registers. However, the
registers also have some special functions for which they are more suited than
others. For example, the eight extended-precision registers are especially
suited for maintaining extended-precision floating-point results. The eight
auxiliary registers support a variety of indirect addressing modes and can be
used as general-purpose 32-bit integer and logical registers. The remaining
registers provide system functions such as addressing, stack management,
processor status, interrupts, and block repeat. Refer to Section 6 for detailed
information and examples of stack management and register usage.

The registers names and assigned functions are listed in Table 3-1. Following
the table, the function of each register or group of registers will be briefly de-
scribed. Refer to Section 4 for detailed information on each of the CPU reg-
isters.

\
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3-6

Table 3-1. CPU Registers

REGISTER ASSIGNED FUNCTION
NAME

RO Extended-precision register 0
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7

ARO Auxiliary register 0

AR1 Auxiliary register 1

AR2 Auxiliary register 2

AR3 Auxiliary register 3

AR4 Auxiliary register 4

AR5 Auxiliary register 5

ARG Auxiliary register 6

AR7 Auxiliary register 7

DP Data page pointer

IRO Index register O

IR1 Index register 1

BK Block size

SP System stack pointer

ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags

I0OF 1/0 flags

RS Repeat start address

RE Repeat end address

RC Repeat counter

PC Program Counter

The extended-precision registers (R0-R7) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. |f the operands are either signed or unsigned integers, only bits
31-0 are used, bits 39-32 remain unchanged. This is true for all shift oper-
ations. Refer to Section 4 for extended-precision register formats for float-

. ing-point and integer numbers.

The 32-bit auxiliary registers (AR0-AR7) can be accessed by the CPU and
modified by the two Auxiliary Register Arithmetic Units (ARAUs). The primary
function of the auxiliary registers is the generation of 24-bit addresses. They
can also be used to perform a variety of functions, such as loop counters or
as 32-bit general-purpose registers that can be modified by the multiplier and
ALU. Refer to Section 6 for detailed information and examples of the use of
auxiliary registers in addressing.

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64 k words long with a total of 256
pages.
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The 32-bit index registers (IR0 and IR1) are used by the Auxiliary Register
Arithmetic Unit (ARAU) for indexing the address. Refer to Section 6 for ex-
amples of the use of index registers in addressing.

The 32-bit block size register (BK) is used by the ARAU in circular ad-
dressing to specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address

of the top of the system stack. The SP always points to the last element 3
pushed onto the stack. A push performs a preincrement and a pop, a postde-
crement of the system stack pointer. The SP is manipulated by interrupts,
traps, calls, returns, and the PUSH and POP instructions. Refer to Section 6.5

for information about system stack management.

The status register (ST) contains global information relating to the state
of the CPU. Typically, operations set the condition flags of the status register
according to whether the result is zero, negative, etc. This includes register
load and store operations as well as arithmetic and logical functions. When
the status register is loaded, however, a bit-for-bit replacement is performed
on the current contents with the contents of the source operand regardless of
the state of any bits in the source operand. Therefore, following a load, the
contents of the status register are identically equal to the contents of the
source operand. This allows the status register to be easily saved and restored.
See Table 4.2 for a list and definitions of the status register bits.

The CPU/DMA interrupt enable register (lE) is a 32-bit register. The
CPU interrupt enable bits are in locations 10-0. The DMA interrupt enable
bits are in locations 26-16. A 1 in a CPU/DMA interrupt enable register bit
enables the corresponding interrupt. A O disables the corresponding interrupt.
Refer to Section 4.1 for bit definitions.

The CPU interrupt flag register (IF) is also a 32-bit register (see Section
4.1). A 1in a CPU interrupt flag register bit indicates that the corresponding
interrupt is set. A O indicates that the corresponding interrupt is not set.

The 1/0O flags register (IOF) controls the function of the dedicated external
pins, XFQ and XF1. These pins may be configured for input or output, and
they may also be read from and written to. See Section 4.1 for detailed infor-
mation.

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat. When
operating in the repeat mode, the 32-bit repeat start address register
(RS) contains the starting address of the block of program memory to be re-
peated and the 32-bit repeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Although the PC is not part of the CPU register
file, it is a register that can be modified by instructions that modify the program
flow.
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3.2 Memory Organization

The total memory space of the TMS320C30 is 16M (million) 32-bit words.
Program, data, and /O space are contained within this 16 M-word address
space, thus allowing tables, coefficients, program code, or data to be stored
in either RAM or ROM. In this way, memory usage can be maximized and
memory space allocated as desired.

3.2.1 RAM, ROM, and Cache

Figure 3-3 shows how the memory is organized on the TMS320C30. RAM
blocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits. Each
RAM and ROM block is capable of supporting two accesses in a single cycle.
The separate program buses, data buses, and DMA buses allow for parallel
program fetches, data reads and writes, and DMA operations. For example:
the CPU can access two data values in one RAM block and perform an ex-
ternal program fetch in parallel with the DMA loading another RAM block, all
within a single cycle.

A 64 x 32-bit instruction cache is provided to store often repeated sections
of code, thus greatly reducing the number of off-chip accesses necessary. This
allows for code to be stored off-chip in slower, lower-cost memories. The
external buses are also freed for use by the DMA, external memory fetches, or
other devices in the system.

Refer to Section 4 for detailed information about the memory and instruction
cache.
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3.2.2 Memory Maps

3-10

The memory map is dependent upon whether the processor is running in the
microprocessor mode (MC/MP = 0) or the microcomputer mode (MC/MP =
1). The memory maps for these modes are very similar (see Figure 3-4). Lo-
cations 800000h through 801 FFFh are mapped to the expansion bus. When
this region is accessed, MSTRB is active. Locations 802000h through
803FFFh are reserved. Locations 804000h through 805FFFh are mapped to
the expansion bus. When this region is accessed, IOSTRB is active. Locations
806000h through 807FFFh are reserved. All of the memory-mapped periph-
eral registers are in locations 808000h through 8097FFh. In both modes,
RAM block O is located at addresses 809800h through 809BFFh, and RAM
block 1 is located at addresses 809C00h through 809FFFh. Locations
80A000h through OFFFFFFh are accessed over the external memory port
(STRB active).

In microprocessor mode, the 4K on-chip ROM is not mapped into the
TMS320C30 memory map. Locations Oh through 3Fh consist of interrupt
vector, trap vector, and reserved locations, all of which are accessed over the
external memory port (STRB active). Locations 40h through 7FFFFFh are also
accessed over the external memory port.

In microcomputer mode, the 4K on-chip ROM is mapped into locations Oh
through OFFFh. There are 192 locations (Oh through BFh) within this block
for interrupt vectors, trap vectors, and a reserved space. Locations 1000h
through 7FFFFFh are accessed over the external memory port (STRB active).

Section 4.2 describes the memory maps in greater detail. The peripheral bus
map and the vector locations for reset, interrupts, and traps are also given.
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3.2.3 Memory Addressing Modes

The TMS320C30 supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications. Refer to Section 6 for
detailed information on addressing.

Five groups of addressing modes are provided on the TMS320C30. Six types
3 of addressing may be used within the groups, as shown in the following list:

® General addressing modes:
- Register. The operand is a CPU register.
- Short immediate. The operand is a 16-bit immediate value.
- Direct. The operand is the contents of a 24-bit address.
- Indirect. An auxiliary register indicates the address of the operand.

' ® Three-operand addressing modes:
- Register. Same as for general addressing mode.
- Indirect. Same as for general addressing mode.

e Parallel addressing modes:
- Register. The operand is an extended-precision register.
- Indirect. Same as for general addressing mode.

e Long-immediate addressing mode.
- Long immediate. The operand is a 24-bit immediate value.

[ ) Conditional branch addressing modes:
—  Register. Same as for general addressing mode.
—  PC-relative. A signed 16-bit displacement is added to the PC.

3.2.4 Instruction Set Summary

Table 3-2 lists the TMS320C30 instruction set in alphabetical order. Each
table entry shows the instruction mnemonic, description, and operation. Refer
to Section 11 for a functional listing of the instructions and individual in-
struction descriptions.
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Table 3-2. Instruction Set Summary

MNEMONIC DESCRIPTION OPERATION
ABSF Absolute value of a floating-point |src| = Rn
number
ABSI Absolute value of an integer |src| = Dreg
ADDC Add integers with carry src + Dreg + C = Dreg
ADDC3 Add integers with carry (3-operand) srcl + src2 + C — Dreg
ADDF Add floating-point values src + Rn = Rn
ADDF3 Add floating-point values (3-operand) src1 + src2 = Rn
ADDI Add integers src + Dreg = Dreg
ADDI3 Add integers (3-operand) src1 + src2 + = Dreg
AND Bitwise logical-AND Dreg AND src = Dreg
AND3 Bitwise logical-AND (3-operand) src1 AND src2 — Dreg
ANDN Bitwise logical-AND with complement Dreg AND src = Dreg
ANDN3 Bitwise logical-ANDN (3-operand) src1 AND src2 = Dreg
ASH Arithmetic shift If count > 0:
(Shift Dreg left by count) — Dreg
Else:
(Shift Dreg right by |count{) = Dreg
ASH3 Arithmetic shift (3-operand) If count > O:
(Shift src ieft by count) = Dreg
Else:
(Shift src right by |count|) = Dreg
Becond Branch conditionally (standard) If cond = true:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC = PC
Else, PC +1 = PC
BcondD Branch conditionally (delayed) If cond = true:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC + 3 = PC
Else, PC +1 = PC
LEGEND:
src -~ general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn = register address (RO-R7)
src2 - three-operand addressing modes Daddr - destination memory address
Csrc - conditional-branch addressing modes ARn - auxiliary register n (ARO-AR7)
Sreg - register address (any register) addr - 24-bit immediate address (label)
count - shift value (general addressing modes) cond - condition code (see Section 11)
SP ~ stack pointer ST — status register
GIE - global interrupt enable register RE - repeat interrupt register
RM  -repeat mode bit RS - repeat start register
TOS - top of stack PC - program counter
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Table 3-2. Instruction Set Summary (Continued)

MNEMONIC DESCRIPTION OPERATION
BR Branch unconditionally (standard) Value = PC
BRD Branch unconditionally (delayed) Value = PC
CALL Call subroutine PC+1 > TO0S
Value = PC
CAlLLcond Call subroutine conditionally If cond = true:
PC+1 - TO0S
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC = PC
Else, PC + 1 = PC
CMPF Compare floating-point values Set flags on Rn - src
CMPF3 Compare floating-point values Set flags on srct - src2
(3-operand)
CMPI Compare integers Set flags on Dreg - src
CMPI13 Compare integers (3-operand) Set flags on sr¢1 - src2
DBcond Decrement and branch conditionally ARn - 1 = ARn
(standard) if cond = true and ARn > O:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC = PC
Else, PC+1 = PC
DBcondD Decrement and branch conditionally ARn -1 = ARn
(delayed) If cond = true and ARn > O:
If Csrc is a register, Csrc = PC
If Csrc is a value, Csrc + PC + 3 = PC
Eise, PC+ 1 = PC
FIX Convert floating-point value to integer Fix (src) = Dreg
FLOAT Convert integer to floating-point value Float(src) = Rn
IDLE Idle until interrupt PC+1 - PC
Idle until next interrupt
LDE Load floating-point exponent src(exponent) =* Rn(exponent)
LDF Load floating-point value src = Rn
LEGEND:
src - general addressing modes Dreg - register address (any register)

srcl

src2
Csrc
Sreg

- three-operand addressing modes

- three-operand addressing modes

= conditional-branch addressing modes
- register address (any register)

count - shift value (general addressing modes)

SP
GIE
RM
TOS
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- stack pointer

- global interrupt enable register
- repeat mode bit

- top of stack

Rn - register address (R0O-R7)
Daddr - destination memory address

ARn - auxiliary register n (ARO-AR7)
addr - 24-bit immediate address (label)
cond - condition code (see Section 11)
ST = status register

RE = repeat interrupt register

RS — repeat start register

PC = program counter
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Table 3-2. Instruction Set Summary (Continued)

MNEMONIC DESCRIPTION OPERATION
LDFcond Load floating-point value If cond = true, src = Rn
conditionally Else, Rn is not changed
LDFI Load floating-point value, Signal interlocked operation
interlocked src = Rn
LDI Load integer src = Dreg
LDlcond Load integer conditionally If cond = true, src = Dreg
Else, Dreg is not changed
LDH Load integer, interlocked Signal interlocked operation
src = Dreg
LDM Load floating-point mantissa src(mantissa) = Rn(mantissa)
LSH Logical shift If count > 0:
(Dreg left-shifted by count) = Dreg
Else:
(Dreg right-shifted by |count|) = Dreg
LSH3 Logical shift (3-operand) If count > O:
(src left-shifted by count) = Dreg
Else:
(src right-shifted by |count|) = Dreg
MPYF Multiply floating-point values src X Rn = Rn
MPYF3 Multiply floating-point values src1 x src2 = Rn
(3-operand)
MPYI Multiply integers src x Dreg = Dreg
MPYI3 Multiply integers (3-operand) src1 x src2 ~* Dreg
NEGB Negate integer with borrow 0 -src - C = Dreg
NEGF Negate floating-point value 0 -src ~ Rn
NEGI Negate integer 0 - src = Dreg
NOP No operation Modify src if specified
NORM Normalize floating-point value Normalize (src}) =Rn
NOT Bitwise logical-complement sic = Dreg
OR Bitwise logical-OR Dreg OR src = Dreg
OR3 Bitwise logical-OR (3-operand) src1 OR src2 = Dreg
LEGEND:
src — general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn - register address (RO-R7)
src2 - three-operand addressing modes Daddr - destination memory address
Csrc - conditional-branch addressing modes ARn - auxiliary register n (ARQ-AR7)
Sreg - register address (any register) addr - 24-bit immediate address (label)
count - shift value (general addressing modes) cond - condition code (see Section 11)
SP - stack pointer ST - status register
GIE - global interrupt enable register RE = repeat interrupt register
RM  -repeat mode bit RS ~ repeat start register
TOS - top of stack PC - program counter
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Table 3-2. Instruction Set Summary (Continued)

MNEMONIC DESCRIPTION OPERATION
POP Pop integer from stack *SP--— Dreg
POPF Pop floating-point value from stack *SP--— Rn
PUSH Push integer on stack Sreg =" ++ SP
PUSHF Push floating-point value on stack Rn = *++ SP
RETIcond Return from interrupt conditionally If cond = true or missing:
*SP--—» PC
1 - ST (GIE)
Else, continue
RETScond Return from subroutine conditionally If cond = true or missing:
*SP-- = PC
Else, continue
RND Round floating-point value Round (src) = Rn
ROL Rotate left Dreg rotated left 1 bit = Dreg
ROLC Rotate left through carry Dreg rotated left 1 bit through carry — Dreg
ROR Rotate right Dreg rotated right 1 bit = Dreg
RORC Rotate right through carry Dreg rotated right 1 bit thru carry = Dreg
RPTB Repeat block of instructions src = RE
1 = ST (RM)
Next PC = RS
RPTS Repeat single instruction src = RC
1 - ST (RM)
Next PC = RS
Next PC = RE
SIGI Signal, interlocked Signal interlocked operation
Wait for interlock acknowledge
Clear interlock
STF Store floating-point value Rn — Daddr
STFI Store floating-point value, interlocked Rn = Daddr
Signal end of interlocked operation
STI Store integer Sreg —* Daddr
STH Store integer, interlocked Sreg — Daddr
Signal end of interlocked operation
LEGEND:
src - general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn - register address (RO-R7)

src2 - three-operand addressing modes
Csrc - conditional-branch addressing modes

Sreg - register address (any register)

count - shift value (general addressing modes)

SP = stack pointer

GIE - global interrupt enable register
RM - repeat mode bit

TOS - top of stack

Daddr - destination memory address
ARn - auxiliary register n (ARO-AR7)
addr - 24-bit immediate address (label)
cond - condition code (see Section 11)

ST - status register

RE - repeat interrupt register
RS - repeat start register

PC = program counter
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Table 3-2. Instruction Set Summary (Continued)

MNEMONIC DESCRIPTION OPERATION
SUBB Subtract integers with borrow Dreg - src - C = Dreg
SUBB3 Subtract integers with borrow srcl - src2 - C = Dreg
(3-operand)
SUBC Subtract integers conditionally If Dreg - src > O:
[(Dreg-src) << 1] OR1 — Dreg
Else, Dreg << 1 — Dreg
SUBF Subtract floating-point values Rn - src = Rn
SUBF3 Subtract floating-point values srct - strc2 = Rn
(3-operand)
SUBI Subtract integers Dreg - src = Dreg
SUBI3 Subtract integers (3-operand) srcl1 - src2 = Dreg
SUBRB Subtract reverse integer with borrow src - Dreg - C = Dreg
SUBRF Subtract reverse floating-point value src - Rn = Rn
SUBRI Subtract reverse integer src - Dreg = Dreg
Swi Software interrupt Perform emulator interrupt sequence
TRAPcond Trap conditionally If cond = true or missing:
Next PC = * ++ SP
Trap vector N = PC
0 — ST (GIE)
Else, continue
TSTB Test bit fields Dreg AND src
TSTB3 Test bit fields (3-operand) srct AND src2
XOR Bitwise exclusive-OR Dreg XOR src = Dreg
XOR3 Bitwise exclusive-OR (3-operand) srct XOR src2 = Dreg
LEGEND:
src - general addressing modes Dreg - register address (any register)
src1 - three-operand addressing modes Rn - register address (R0O-R7)

src2 —three-operand addressing modes

Csrc - conditional-branch addressing modes
Sreg - register address (any register)

count = shift value (general addressing modes)
SP = stack pointer

GIE - global interrupt enable register

RM - repeat mode bit

TOS - top of stack

Daddr - destination memory address
ARn - auxiliary register n (AR0O-AR7)
addr - 24-bit immediate address (label)
cond - condition code (see Section 11)

ST - status register

RE - repeat interrupt register
RS - repeat start register

PC — program counter
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Table 3-2. Instruction Set Summary (Continued)

src1 - register addr (RO-R7)
src3 - register addr (RO-R7)
dst1 - register addr (RO-R7)

MNEMONICl DESCRIPTION OPERATION
PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS
ABSF Absolute value of a floating-point |src2| — dst1
|| STF || sre3 — dst2
ABSI Absolute value of an integer {src2| — dst1
|} STI || src3 = dst2
ADDF3 Add floating-point srct + src2 = dst1
|| STF || sre3 - dst2
ADDI3 Add integer src1 + src2 - dst1
1| STI | src3 = dst2
AND3 Bitwise logical-AND src1 AND src2 — dst1
il STI |} src3 = dst2
ASH3 Arithmetic shift If count > 0:
1} STI src2 << count —* dst1
|| sre3 = dst2
Else:
src2 >> |count| = dst1
|| sre3 = dst2
FIX Convert floating-point to integer Fix(src2) — dst1
| STI || src3 = dst2
FLOAT Convert integer to floating-point Float(src2) — dst1
|| STF || src3 —» dst2
LDF Load floating-point src2 — dsti
|| STF || src3 —dst2
LDI Load integer src2 = dsti
I STI || sre3 — dst2
LSH3 Logical shift If count > O:
|| STI src2 << count = dst1
|| src3 = dst2
Else:
src2 >> |count| = dst1
|| src3 = dst2
MPYF3 Muitiply floating-point src1 x src2 — dstl
|| STF || src3 = dst2
MPYI3 Multiply integer srcl x srcE = dstt
|1 STI |} src3 = dst2
NEGF Negate floating-point 0- src2 = dst1
|} STF || sre3 = dst2
LEGEND:

src2- indirect addr (disp = 0, 1, IRO, IR1)
src4 - indirect addr (disp = 0, 1, IR0, 1R1)
dst2 - indirect addr (disp = 0, 1, IR0, iR1)
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Table 3-2. Instruction Set Summary (Concluded)

MNEMONIC | DESCRIPTION 1 OPERATION
PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS (Concluded)
NEGI Negate integer 0 - src2 = dst1
|| STI || sre3 = dst2
NOT3 Complement srcl — dsti
|| STI || src3 = dst2
OR3 Bitwise logical-OR src1 OR src2 - dst1
II STI |Isrc3 = dst2
STF Store floating-point src1 = dstt
|| STF |Isrc3 = dst2
STI Store integer src1 — dst1
|| STI |f src3 = dst2
SUBF3 Subtract floating-point srct - src2 = dst1
|| STF || src3 = dst2
SUBI3 Subtract integer srcl - src2 — dst1
I{ STI || src3 = dst2
XOR3 Bitwise exclusive-OR srcl XOR src2 = dstt
| STI || src3 = dst2
PARALLEL LOAD INSTRUCTIONS
LDF Load floating-point src2 —* dstil
|| LDF || src4 —* dst2
LDI Load integer src2 —* dst1
|| LDI || src4 — dst2
PARALLEL MULTIPLY AND ADD/SUBTRACT INSTRUCTIONS
MPYF3 Multiply and add floating-point opl x op2 = op3
|| ADDF3 || op4 + op5 —* op6
MPYF3 Multiply and subtract floating-point opl x op2 = op3
Il SUBF3 || op4 - op5 = opb
MPYI3 Multiply and add integer op1 x op2 = op3
|| ADDI3 || op4 + op5 — opb
MPYI3 Multiply and subtract integer op1 x op2 = op3
|| SUBI3 || opé - op5 = op6
LEGEND:

src1 —register addr (RO-R7)
src3 - register addr (RO-R7)
dst1 - register addr (RO-R7)
op3 - register addr (RO or R1)

src2 - indirect addr (disp = 0, 1, IR0, IR1)
src4 - indirect addr (disp = 0, 1, IRG, IR1)
dst2 - indirect addr (disp = 0, 1, IR0, IR1)
op6 - register addr (R2 or R3)

op1,0p2,0p4,0p5 - Two of these operands must be specified using register addr.
and two must be specified using indirect
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3.3 Internal Bus Operation
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A large portion of the TMS320C30's high performance is due to the internal
busing and the parallelism possible because of this busing. The separate
program buses (PADDR and PDATA), data buses (DADDR1, DADDR2, and
DDATA), and DMA buses (DMAADDR and DMADATA) allow for parallel
program fetches, data accesses, and DMA accesses. These buses connect all
of the physical spaces (on-chip memory, off-chip memory, and on-chip pe-
ripherals) supported by the TMS320C30.

The program counter (PC) is connected to the 24-bit program address bus
(PADDRY). The instruction register (IR) is connected to the 32-bit program
data bus (PDATA). These buses can fetch a single instruction word every
machine cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are reg-
ister buses REG1 and REG2 that can carry two data values from the register
file to the multiplier and ALU every machine cycle.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a 32-bit data bus (DMADATA). These buses allow the DMA to perform me-
mory accesses in parallel with the memory accesses occurring from the data
and program buses.
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3.4 External Bus Operation

The TMS320C30 provides two external interfaces: the primary bus and ex-
pansion bus. Both consist of a 32-bit data bus and a set of control signals.
The primary bus has a 24-bit address bus, whereas the expansion bus has a
13-bit address bus. Both buses can be used to address externa! program/data
memory or I/O space. The buses also have an external RDY signal for wait-
state generation. Additional wait states may be inserted under software con-
trol. Refer to Section 8 for detailed information on external bus operation. m

The TMS320C30 supports four external interrupts (INT3-INTO), a number of
internal interrupts, and a nonmaskable external RESET signal. Two external /O
flags, XFO and XF1, can be configured as input or output pins under software
control. These pins are also used by the interlocked operations of the
TMS320C30. The interlocked-operations instruction group supports multi-
processor communication (see Section 7 for examples of the use of inter-
locked instructions).
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3.5 Peripherals
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All TMS320C30 peripherals are controlled through memory mapped registers
on a dedicated peripheral bus, composed of a 32-bit data bus and a 24-bit
address bus. This peripheral bus permits straightforward communication to
the peripherals. The TMS320C30 peripherals include two timers and two se-
rial ports. Figure 3-5 shows the peripherals with associated buses and signals.

Refer to Section 9 for detailed information on the peripherals.
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3.5.1 Timers

The two timer modules are general-purpose 32-bit timer/event counters, with
two signaling modes and internal or external clocking. Each timer has an 1/0
pin that can be used as an input clock to the timer or as an output signal dri-
ven by the timer. The pin may also be configured as a general-purpose 1/0
pin.

3.5.2 Serial Ports

The two serial ports are totally independent. They are identical with a com-
plementary set of control registers controlling each one. Each serial port can
be configured to transfer 8, 16, 24, or 32 bits of data per word. The clock for
each serial port can originate either internally or externally. An internally
generated divide-down clock is provided. The serial port pins are configurable
as general-purpose 1/0 pins. The serial ports can also be configured as timers.
A special handshake mode allows TMS320C30s to communicate over their
serial ports with guaranteed synchronization.
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3.6 Direct Memory Access (DMA)

The on-chip Direct Memory Access (DMA) controller can read from or write
to any location in the memory map without interfering with the operation of
the CPU. Therefore, the TMS320C30 can interface to slow external memories
and peripherals without reducing throughput to the CPU. The DMA controller
contains its own address generators, source and destination registers, and
transfer counter. Dedicated DMA address and data buses allow for minimi-

zation of conflicts between the CPU and the DMA controller. A DMA opera-
tion consists of a block or single-word transfer to or from memory. Refer to
Section 9 for detailed information on the DMA. Figure 3-6 shows the DMA
controller with associated buses.
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Figure 3-6. DMA Controller

In summary, the TMS320C30 is a powerful DSP system because of its inte-
gration of a powerful CPU, large memories, and sufficient buses to support its
speed. These along with peripherals such as a DMA controller, two serial
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ports, and two timers are all contained on a single chip. The total system real
estate and price have been reduced, providing the user with a true single-chip
solution.
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Section 4

CPU Registers, Nemory, and Cache

The CPU register file contains 28 registers that can be operated upon by the
multiplier and ALU (arithmetic logic unit). Included in the register file are the
auxiliary registers, extended-precision registers, and index registers. The reg-
isters in the CPU register file support addressing, floating-point/integer oper-
ations, stack management, processor status, block repeats, and interrupts.

The TMS320C30 provides a total memory space of 16M (million) 32-bit
words. Program, data, and 1/O space are contained within this 16M-word
address space. Two RAM blocks of 1K x 32 bits each and a ROM block of 4K
x 32 bits permit two accesses in a single cycle. The memory maps for the
microcomputer and microprocessor modes are similar, except that the on-chip
ROM is not used in microprocessor mode.

A 64 x 32-bit instruction cache stores often repeated sections of code. This
greatly reduces the number of off-chip accesses necessary and allows code to
be stored off-chip in slower, lower-cost memories. Three bits are provided in
the CPU status register to control the clear, enable, or freeze of the cache.

This section describes in detail each of the CPU registers, the memory maps,
and the instruction cache. Major topics in this section are as follows:

o CPU Register File (Section 4.1 on page 4-2)
Extended-precision registers (R0-R7)
—  Auxiliary registers (ARO-AR7)
- Index registers (IR0, IR1)
- Block size register (BK)
- Data page pointer (DP)
- System stack pointer (SP)
Status register (ST)
CPU/DMA interrupt enable register (IE)
CPU interrupt flag register (IF)
170 flags register (I0F)
Repeat counter (RC) and block repeat registers (RS, RE)
Program counter (PC)

[ Memory (Section 4.2 on page 4-11)
- Memory maps
- Peripheral bus map
- Reset/interrupt/trap map

(] Instruction Cache (Section 4.3 on page 4-15)
- Cache architecture
- Cache algorithm
- Cache control bits



CPU Registers - CPU Register File

4.1 CPU Register File
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The TMS320C30 provides 28 registers in a multiport register file that is tightly
coupled to the CPU. The PC is not included in the 28 registers. All of these
registers can be operated upon by the multiplier and ALU, and can be used
as general-purpose 32-bit registers. However, the registers also have some
special functions for which they are more suited than others. For example, the
eight extended-precision registers are especially suited for maintaining ex-
tended-precision floating-point results. The eight auxiliary registers support
a variety of indirect addressing modes and can be used as general-purpose
32-bit integer and logical registers. The remaining registers provide system
functions such as addressing, stack management, processor status, interrupts,
and block repeat. Refer to Section 6 for detailed information and examples
of the use of CPU registers in addressing.

The registers names and assigned function are listed in Table 4-1.

Table 4-1. CPU Registers

REGISTER ASSIGNED FUNCTION
NAME

RO Extended-precision register O
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7

ARO Auxiliary register 0

ARt Auxiliary register 1

AR2 Auxiliary register 2

AR3 Auxiliary register 3

AR4 Auxiliary register 4

ARb Auxiliary register 5

AR6 Aucxiliary register 6

AR7 Auxiliary register 7

DP Data page pointer

IRO Index register O

IR1 Index register 1

BK Block size

SP System stack pointer

ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags

10F 1/0 flags

RS Repeat start address

RE Repeat end address

RC Repeat counter

PC Program counter
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41.1 Extended-Precision Registers (R0O-R7)

The eight extended-precision registers (RO-R7) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
These registers consist of two separate and distinct regions. Bits 39-32 of the
extended-precision registers are dedicated to the storage of the exponent (e)
of the floating-point number. Bits 31-0 store the mantissa of the floating-
point number. Bit 31 is the sign (s) bit, bits 30 - O are the fraction (f). Any
instruction that assumes the operands are floating-point numbers uses bits
39-0. Figure 4-1 illustrates the storage of 40-bit floating-point numbers in the

extended-precision registers.
39 32 3130 o -
e [s] f |

I‘- mantissa -'I

Figure 4-1. Extended-Precision Register Floating-Point Format

For integer operations, bits 31-0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precision registers is shown in Figure 4-2.

39 32 31 0
unchanged signed or unsigned integer J

Figure 4-2. Extended-Precision Register Integer Format

4.1.2 Auxiliary Registers (ARO-AR7)

The eight 32-bit auxiliary registers (AR0O-AR7) can be accassed by the CPU
and modified by the two Auxiliary Register Arithmetic Units (ARAUs). The
primary function of the auxiliary registers is the generation of 24-bit addresses.
However, they can also be used to perform a variety of functions, such as loop
counters in indirect addressing or as 32-bit general-purpose registers that can
be modified by the multiplier and ALU. Refer to Section 6 for detailed infor-
mation and examples of the use of auxiliary registers in addressing.
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4.1.3 Data Page Pointer (DP)

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64 k words long with a total of 256
pages. Bits 31 - 8 are reserved and should always be kept zero by the user.

4.1.4 Index Registers (IR0, IR1)

The 32-bit index registers (IR0 and IR1) are used by the Auxiliary Register
Arithmetic Unit (ARAU) for indexing the address. Refer to Section 6 for de-
tailed information and examples of the use of index registers in addressing.

n 4.1.5 Block Size Register (BK)

The 32-bit block size register (BK) is used by the ARAU in circular addressing
to specify the data block size (see Section 6.3).

4.1.6 System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The SP always points to the last element pushed
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the
stack perform pre-increment and post-decrement on all 32 bits of the stack
pointer. However, only the 24 LSBs are used as an address. Refer to Section
6.5 for information about system stack management.

4.1.7 Status Register (ST)

4-4

The status register (ST) contains global information relating to the state of the
CPU. Typically, operations set the condition flags of the status register ac-
cording to whether the result is zero, negative, etc. This includes register load
and store operations as well as arithmetic and logical functions. When the
status register is loaded, however,a bit-for-bit replacement is performed of the
current contents with the contents of the source operand regardless of the
state of any bits in the source operand. Therefore, following a load, the con-
tents of the status register are identically equal to the contents of the source
operand. This allows the status register to be easily saved and restored. At
system reset, 0 is written to this register.

The format of the status register is shown in Figure 4-3. Table 4-2 defines the
status register bits, their names and functions.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
[xxlxxex]xx—[xxLxxlxx rxxlxx]xxlxx]xxlxx1xx7xxTxx1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ x | xx faie{cc]ce] cF| xx [Rmfovmjur] v Jurf N[z [ v | c ]
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

NOTE: xx = reserved bit.
R = read, W = write.

Figure 4-3. Status Register
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Table 4-2. Status Register Bits Summary

BIT | NAME FUNCTION

0 C Carry flag

1 Vv Overflow flag

2 Y4 Zero flag

3 N Negative flag

4 UF Floating-point underflow flag

5 Lv Latched overflow flag

6 LUF Latched floating-point underflow flag

7 OVM Overflow mode flag. This flag affects only the integer operations. If
OVM = 0, the overflow mode is turned off; integer results that over-
flow are treated in no special way. If OVM = 1, integer results over-
flowing in the positive direction are set to the most positive 32-bit
two’s-complement number (7FFFFFFFh). If OVM = 1, integer results
overflowing in the negative direction are set to the most negative
32-bit two's-complement number (80000000h). Note that the func-
tion of V and LV is independent of the setting of OVM.

8 RM Repeat mode flag. If RM = 1, the PC is being modified in either the
repeat block or repeat-single mode.

9 (Reserved| Read asO.

10 CF Cache Freeze. When CF = 1, the cache is frozen. If the cache is en-
abled (CE = 1), fetches from the cache are allowed, but no modifica-
tion of the state of the cache is performed. This function can be used
to save frequently used code resident in the cache. At reset, O is writ-
ten to this bit. Cache clearing (CC=1) is allowed when CF=0.

11 CE Cache Enable. CE = 1 enables the cache, allowing the cache to be
used according to the LRU cache algorithm. CE = O disables the
cache; no update or modification of the cache can be performed. No
fetches are made from the cache. This function is useful for system
debug. At system reset, O is written to this bit. Cache clearing (CC
= 1) is allowed when CE=0.

12 cc Cache Clear. CC = 1 invalidates all entries in the cache. This bit is
always cleared after it is written to and thus always read as 0. Atreset,
0 is written to this bit.

13 GIE Global interrupt enable. If GIE = 1, the CPU responds to an enabled
interrupt. If GIE = 0, the CPU does not respond to an enabled inter-
rupt.

14-15 Reserved| Read as 0.
16-31| Reserved| Value undefined.
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4.1.8 CPU/DMA Interrupt Enable Register (IE)

31

30

29

The CPU/DMA interrupt enable register (IE) is a 32-bit register (see Figure
4-4). The CPU interrupt enable bits are in locations 10-0. The DMA interrupt
enable bits are in locations 26-16. A 1 in a CPU/DMA interrupt enable reg-
ister bit enables the corresponding interrupt. A O disables the corresponding
interrupt. At reset, 0 is written to this register. Table 4-3 defines the register
bits, the bit names, and the bit functions.

28 27 26 25 24 23 22 21 20 19 18 17 16

XX

XX

xx | xx |EDINT]ETINT1|ETINTOJERINTT]EXINT1|ERINTO|EXINTOI|EINT3 | EINT2 ] EINT1{ EINTO
(DMA)} (DMA)| (DMA){ (DMA) | (DMA)| (DMA) | (DMA) [(DMA)|(DMA)|(DMA){(DMA)

14

13

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

12 1 10 9 8 7 6 5 4 3 2 1 0

XX

XX

xx | xx |EDINT|ETINT1]ETINTO|ERINT1|EXINT1|ERINTO|EXINTO[ EINT3 | EINT2| EINT1 | EINTO
(CPU)| (CPU) | (CPU) | (CPU) | (CPU) | (CPU) | (CPU) [(CPU)|(CPU)|(CPU)[(CPU)

R/W R/W R/W R/W R/W R/W R/W R/W R/W RW R/W

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 4-4. CPU/DMA Interrupt Enable Register (IE)

4-7



CPU Registers - CPU Register File

Table 4-3. IE Register Bits Summary

BIT NAME FUNCTION
4] EINTO Enable external interrupt 0 (CPU)
1 EINT1 Enable external interrupt 1 (CPU)
2 EINT2 Enable external interrupt 2 (CPU)
3 EINT3 Enable external interrupt 3 (CPU)
4 EXINTO Enable serial port O transmit interrupt (CPU)
5 ERINTO Enable serial port O receive interrupt (CPU)
6 EXINT1 Enable serial port 1 transmit interrupt (CPU)
7 ERINT1 Enable serial port 1 receive interrupt (CPU)
8 ETINTO Enable timer O interrupt (CPU)
9 ETINT1 Enable timer 1 interrupt (CPU)
10 EDINT Enable DMA controller interrupt (CPU)
11-15] Reserved Value undefined
16 EINTOQ Enable external interrupt 0 (DMA)
17 EINT1 Enable external interrupt 1 (DMA)
18 EINT2 Enable external interrupt 2 (DMA)
19 EINT3 Enable external interrupt 3 (DMA)
20 EXINTO Enable serial port O transmit interrupt (DMA)
21 ERINTO Enable serial port O receive interrupt (DMA)
22 EXINT1 Enable serial port 1 transmit interrupt (DMA)
23 ERINT1 Enable serial port 1 receive interrupt (DMA)
24 ETINTO Enable timer O interrupt (DMA)
25 ETINT1 Enable timer 1 interrupt (DMA)
26 EDINT Enable DMA controller interrupt (DMA)
27-32| Reserved Value undefined

4.1.9 CPU Interrupt Flag Register (IF)
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The 32-bit CPU interrupt flag register (IF) is shown in Figure 4-5. A1 in a
CPU interrupt flag register bit indicates that the corresponding interrupt is set.
The IF bits are set to 1 when an interrupt occurs. They may also be set to 1
through software to cause an interrupt. A O indicates that the corresponding
interrupt is not set. If a O is written to an interrupt flag register bit, the corre-
sponding interrupt is cleared. At reset, O is written to this register. Table 4-4
lists the bit fields, bit field names, and bit field functions of the CPU interrupt

flag register.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IXXIXXIXXIXXIX;LXXJ XX I XX I XX I XX l XX l XX LXXIXXIXX'XXI

514131211 10 9 8 7 6 5 4 3 2 1 0
xx Pooc fxx oo xc JOINTETINTY | TINTO [ RINT1 | XINT1 [ RINTO} XINTOINT3]INT2]INT1]INTO]
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 4-5. CPU Interrupt Flag Register (iF)

Table 4-4. IF Register Bits Summary u
BIT | NAME FUNCTION
0 INTO External interrupt O flag
1 INT1 External interrupt 1 flag
2 INT2 External interrupt 2 flag
3 INT3 External interrupt 3 flag
4 XINTO Serial port 0 transmit interrupt flag
5 RINTO Serial port 0 receive interrupt flag
6 XINT1 Serial port 1 transmit interrupt flag
7 RINT1 Serial port 1 receive interrupt flag
8 TINTO Timer O interrupt flag
9 TINT1 Timer 1 interrupt flag
10

DINTO DMA channel interrupt flag
11-31| Reserved Value undefined

4.1.10 1/0 Flags Register (IOF)

The 1/0 flags register (IOF) controls the function of the dedicated external
pins, XFO and XF1. These pins may be configured for input or output (see
Table 4-5). They may also be read from and written to. At reset, O is written
to this register. The bit fields, bit field names, and bit field functions are shown

in Table 4-5.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
I XX | XX Il’d XX Lxx] XX I XX lxxT XX [ XX I XX I XX l XX l XX I XX l xx]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l XX I XX l xxJ XX lxx] XX | XX lxx | INXF1 l OUTXF1 IT/OXF1 Lxxl INXFO [OUTXFO [T/OXFOI xx]

R R/W R/W R R/W R/W

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 4-6. 1/0 Flag Register (IOF)

4-9



CPU Registers - CPU Register File

Table 4-5. 10F Register Bits Summary

BIT | NAME FUNCTION

0 | Reserved] Read asO.

1 T/OXFO If I/OXFO = 0, XFO is configured as a general-purpose input pin.
If I/OXFO = 1, XFO is configured as a general-purpose output pin.

OQUTXFO | Data output on XFO.

Reserved | Read as O.

2
3 INXFO Data input on XFO. A write has no effect.
4
5

T/OXF1 | 1fI/OXF1 = 0, XF1 is configured as a general-purpose input pin.
I1f I/OXF1 = 1, XF1 is configured as a general-purpose output pin.

6 | OUTXF1 Data output on XF1.

7 INXF1 Data input on XF1. A write has no effect.

8-31| Reserved| Read as O.

4.1.11 Repeat Counter (RC) and Block Repeat Registers (RS, RE)

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat.

The repeat start address register (RS) is a 32-bit register containing the start-
ing address of the block of program memory to be repeated when operating
in the repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of the
block of program memory to be repeated when operating in the repeat mode.

41.12 Program Counter (PC)

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. While the program counter is not part of the
CPU register file, it is a register that can be modified via instructions that mo-
dify the program flow.

4.1.13 Reserved Bits and Compatibility
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In order to retain compatibility with future members of the TMS320C3X family
of microprocessors, reserved bits that are read as zero must be written as zero.
Reserved bits that have an undefined value must not have their current value
modified. In other cases, the user should maintain the reserved bits as speci-
fied.
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4.2 Memory

The total memory space of the TMS320C30 is 16M (million) 32-bit words.
Program, data, and I/O space are contained within this, allowing tables, co-
efficients, program code, or data to be stored in either RAM or ROM. In this
way, memory usage can be maximized and memory space allocated as desired.

RAM blocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits.
Each RAM and ROM block is capable of supporting two accesses in a single
cycle. The separate program buses, data buses, and DMA buses allow for
parallel program fetches, data reads/writes, and DMA operations. This is cov-
ered in detail in Section 10.3. n

4.2.1 Memory Maps

The memory map is dependent upon whether the processor is running in the
microprocessor mode (MC/MP = Q) or the microcomputer mode (MC/MP =
1). The memory maps for these modes are very similar (see Figure 4-7). Lo-
cations 800000h through 801FFFh are mapped to the expansion bus. When
this region is accessed, MSTRB is active. Locations 802000h through
803FFFh are reserved. Locations 804000h through 805FFFh are mapped to
the expansion bus. When this region is accessed, IOSTRB is active. Locations
806000h through 807FFFh are reserved. All of the memory-mapped periph-
eral registers are in locations 808000h through 8097FFh. In both modes,
RAM block O is located at addresses 809800h through 809BFFh, and RAM
block 1 is located at addresses 809C00h through 809FFFh. Memory locations
80A000h through OFFFFFFh are accessed over the external memory port
(STRB active).

In microprocessor mode, the 4K on-chip ROM is not mapped into the
TMS320C30 memory map. Locations Gh through 3Fh consist of interrupt
vector, trap vector, and reserved locations, all of which are accessed over the
external memory port (STRB active). Locations 40h through 7FFFFFh are also
accessed over the external memory port.

In microcomputer mode, the 4K on-chip ROM is mapped into locations Oh
through OFFFh. There are 192 locations (Oh through BFh) within this block
for interrupt vectors, trap vectors, and a reserved space. Locations 1000h
through 7FFFFFh are accessed over the external memory port (STRB active).

Reserved portions of the TMS320C30 memory space and reserved peripheral
bus addresses should not be read and written by the user. Doing so may
cause the TMS320C30 to halt operation and require a system reset to restart.
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Oh

BFh
COh

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
808000h
8097FFh

809800h

809BFFh
809C00h

809FFFh
80A000h

OFFFFFFh

INTERRUPT LOCATIONS
AND RESERVED (192)
EXTERNAL STRB ACTIVE

EXTERNAL
STRB ACTIVE

EXPANSION BUS
MSTRB ACTIVE (8K)

RESERVED
(8K)

EXPANSION BUS
IOSTRB ACTIVE (8K)

RESERVED
(8K)

PERIPHERAL BUS
MEMORY-MAPPED
REGISTERS
(INTERNAL) (6K)

RAM BLOCK 0 (1K)
(INTERNAL)

RAM BLOCK 1 (1K)
(INTERNAL)

EXTERNAL
STRB ACTIVE

MICROPROCESSOR MODE

Oh

BFh
COh

OFFFh
1000h

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
808000h
8097FFh

809800h

809BFFH
809C00h

809FFFh
80A000h

OFFFFFFh

Figure 4-7. Memory Maps
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4.2.2 Peripheral Bus Map

The memory-mapped peripheral registers are located starting at address
808000h. The peripheral bus memory map is shown in Figure 4-8. Each pe-
ripheral occupies a 16-word region of the memory map. Locations 808010h

through 80801Fh and locations 808070h through 8097FFh are reserved.

808000h
80800Fh

808010h
80801Fh

808020h
80802Fh

808030h
80803Fh

808040h
80804Fh

808050h
80805Fh

808060h
80806Fh

808070h

8097FFh

Figure 4-8. Peripheral Bus Memory Map

DMA CONTROLLER REGISTERS
(16)

RESERVED
(16)

TIMER 0 REGISTERS
(16)

TIMER 1 REGISTERS
(16)

SERIAL PORT 0 REGISTERS
(16)

SERIAL PORT 1 REGISTERS
(16)

PRIMARY AND EXPANSION PORT
REGISTERS (16)

RESERVED

4.2.3 Reset/Interrupt/Trap Vector Map

The addresses for the reset, interrupt, and trap vectors are Oh through 3Fh, as
shown in Figure 4-9. The vectors stored in these locations are the addresses
of the start of the respective reset, interrupt, and trap routines. For example,
at reset, the contents of memory location Oh (the reset vector) are loaded into
the PC and execution begins from that address.

Traps 28-31 are reserved and should not be used by the user.
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00h
0th
02h
03h
04h
05h
06h
07h
08h
0Sh
0Ah
0Bh
0Ch

1Fh
20h

3Bh
3Ch
3Dh
3Eh
3Fh

Figure 4-9. Reset, Interrupt, and Trap Vector Locations

RESET

INTO

INT1

INT2

INT3

XINTO

RINTO

XINTO

RINT1

TINTO

TINT1

DINT

RESERVED

TRAP O

TRAP 27

TRAP 28 (Reserved)

TRAP 29 (Reserved)

TRAP 30 (Reserved)

TRAP 31 (Reserved)
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4.3 Instruction Cache

A 64 x 32-bit instruction cache allows for maximum system performance with
minimal system cost. The instruction cache stores sections of code that can
be fetched when repeatedly accessing time-critical code. This greatly reduces
the number of off-chip accesses necessary and allows for code to be stored
off-chip in slower, lower-cost memories. The external buses are also freed
from program fetches, so they can be used by the DMA or other system ele-
ments.

The cache can operate in a completely automatic fashion without the need for
user intervention. A form of the LRU (least-recently-used) cache update al-
gorithm is used (see Section 4.3.2).

4.3.1 Cache Architecture

The instruction cache (see Figure 4-10) contains 64 32-bit words of RAM.
The cache is divided into two 32-word segments. Associated with each seg-
ment is a 19-bit segment start address (SSA) register. For each word in the
cache, there is a corresponding single-bit: Present (P) flag.

SEGMENT START
ADDRESS REGISTERS P SEGMENT WORDS LRU
e

/ - FLAGS STACK MOST RECENTLY USED
SEGMENT NUMBER
| ssaReGISTER O | 0 SEGMENT WORD 0 f/—
e 19 — = [ SEGMENT WORD 1 ™ LEAST RECENTLY USED
H H SEGMENT 0 SEGMENT NUMBER
30 SEGMENT WORD 30
31 SEGMENT WORD 31
e 32 ——]
| SSA REGISTER 1 | 0 SEGMENT WORD 0
1 SEGMENT WORD 1
: H SEGMENT 1
30 SEGMENT WORD 30
31 SEGMENT WORD 31

Figure 4-10. Instruction Cache Architecture

When the CPU requests an instruction word from external memory, a check
is made to determine if the word is already contained in the instruction cache.
The partitioning of an instruction address as used by the cache control aigo-
rithm is shown in Figure 4-11. The 19 most-significant bits of the instruction
address are used to select the segment and the 5 least-significant bits define
the address of the instruction word within the pertinent segment. The 19 v
MSBs of the instruction address are compared with the two segment start
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address (SSA) registers. If a match is found, a check is made of the relevant
P flag. The P flag indicates whether or not the word within a particular seg-
ment is already present in cache memory.

23 54 0

segment start address instruction word
(SSA) address within segment

Figure 4-11. Address Partitioning for Cache Control Algorithm

If there is no match, one of the segments must be replaced by the new data.
The segment replaced in this circumstance is determined by the LRU (least-
recently-used) algorithm. The LRU stack (see Figure 4-10) is maintained for
this purpose.

The LRU stack tracks which of the two segments qualifies as the least-re-
cently-used after each access to the cache, therefore the stack contains either
0.1 or 1,0. Each time a segment is accessed, its segment number is removed
from the LRU stack and pushed on the top of the LRU stack. Therefore, the
number at the top of the stack is the most-recently-used segment number and
the number at the bottom of the stack is the least-recently-used segment
number.

At system reset, the LRU stack is initialized with O at the top, 1 at the bottom,
and all P flags in the instruction cache are cleared. If both SSA registers are
equal (due to system reset conditions) and a cache hit occurs, the instruction
word is fetched from the most recently used segment.

When a replacement is necessary, the least-recently-used segment is selected
for replacement. Also, the 32 P flags for the segment to be replaced are set
to 0, and the segment’s SSA register is replaced with the 19 MSBs of the in-
struction address. ,*

4.3.2 Cache Algorithm

When the TMS320C30 requests an instruction word from external memory,
two possible actions occur: a cache hit or a cache miss. These are described
in the following list:

] Cache Hit. The requested instruction is contained within the cache
and the following actions occur:

1) The instruction word is read from the cache.

2) The segment number of the segment within which the word is
contained is removed from the LRU stack and pushed to the top
of the LRU stack, thus moving the other segment number to the
bottom of the stack.

] Cache Miss. The instruction is not contained in the cache. Types of
cache miss are:
1) Word Miss. The segment address register matches the instruction
address, but the relevant P flag is not set. The following actions
occur in parallel:
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- The instruction word is read from memory and copied into
the cache.

—  The segment number of the segment within which the word
is contained is removed from the LRU stack and pushed to
the top of the LRU stack, thus moving the other segment
number to the bottom of the stack.

- The relevant P flag is set.

2) Segment Miss. Neither of the segment addresses matches the in-
struction address. The following actions occur in parallel:

-  The least-recently-used segment is selected for replacement.
The P flags for all 32 words are cleared.

—~  The SSA register for the selected segment is loaded with the
19 MSBs of the address of the requested instruction word.

— The instruction word is fetched and copied into the cache.
It goes into the appropriate word of the least-recently-used
segment. The P flag for that word is set 1.

—  The segment number of the segment containing the instruc-
tion word is removed from the LRU stack and pushed to the
top of the LRU stack, thus moving the other segment number
to the bottom of the stack.

Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and will not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (i.e.,
following a branch) are treated by the cache as valid program fetches and can
generate cache misses and cache updates.

Care should be taken when using self-modifying code. If an instruction re-
sides in cache and the corresponding location in primary memory is modified,
the copy of the instruction in cache is not modified.

More efficient use of the cache can be made by aligning program code on 32
word address boundaries. This can be done using the ALIGN directive when
coding assembly language.

4.3.3 Cache Control Bits

Three cache control bits are located in the CPU status register: the cache clear
bit (CC), cache enable bit (CE), and the cache freeze bit (CF).

Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates
all entries in the cache. All P flags in the cache are cleared. The CC bit is al-
ways cleared after the cache is cleared. It is therefore always read as a 0. At
reset the cache is cleared and O is written to this bit.

Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When
enabled, the cache is used according to the previously described cache algo-
rithm. Writing a O to the cache enable bit disables the cache; no updates or
modification of the cache can be performed. Specifically, no SSA register
updates are performed, no P flags are modified (unless CC = 1), and the LRU
stack is not modified. Writing a 1 to CC when the cache is disabled will clear
the cache, and thus the P flags. No fetches are made from the cache when the
cache is disabled. At reset, O is written to this bit.
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Cache Freeze Bit (CF). When CF = 1, the cache is frozen. If, in addition,
the cache is enabled, fetches from the cache are allowed, but no modification
of the state of the cache is performed. Specifically, no SSA register updates
are performed, no P flags are modified (unless CC = 1), and the LRU stack is
not modified. This function can be used to keep frequently used code resident
in the cache. Writing a 1 to CC when the cache is frozen will clear the cache,
and thus the P flags. At reset, O is written to this bit.
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Table 4-6 defines the effect of the CE and CF bits used in combination.
Table 4-6. Combined Effect of the CE and CF Bits

CE CF EFFECT

0 0 Cache not enabled

0 1 Cache not enabled

1 0 Cache enabled and not frozen
1 1 Cache enabled and frozen
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Section b

Data Formats and Floating-Point Operation

Data is organized in the TMS320C30 architecture to provide three funda-
mental data types: integer, unsigned-integer, and floating-point. Note that the
terms, integer and signed-integer, are considered to be equivalent. The
TMS320C30 supports short and single-precision formats for signed and un-
signed integers. It also supports short, single-precision and extended-
precision formats for floating-point data.

Floating-point operations provide convenient and trouble-free computations
while maintaining accuracy and precision. The TMS320C30 implementation
of floating-point arithmetic allows for floating-point operations at integer
speeds. The floating-point capability can prevent problems with overflow,
operand alignment, and other burdensome tasks common in integer oper-
ations.

This section discusses in detail the data formats and floating-point operations
supported on the TMS320C30. Major topics in this section are as follows:

® Integer Formats (Section 5.1 on page 5-2)

Unsigned-Integer Formats (Section 5.2 on page 5-3)

Floating-Point Formats (Section 5.3 on page 5-4)

Floating-Point Multiplication (Section 5.4 on page 5-9)
Floating-Point Addition and Subtraction (Section 5.5 on page 5-13)
Normalization (Section 5.6 on page 5-17)

Rounding (Section 5.7 on page 5-20)

Floating-Point to Integer Conversions (Section 5.8 on page 5-22)

Integer to Floating-Point Conversions (Section 5.9 on page 5-24)
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5.1 Integer Formats

The TMS320C30 supports two integer formats: a 16-bit short integer format
and a 32-bit single-precision integer format. When extended-precision regis-
ters are used as integer operands only bits 31-0 are used; bits 39-32 remain
unchanged and unused.

5.1.1 Short Integer Format

The short integer format is a 16-bit two’s-complement integer format, used for
immediate mteger operands For those instructions that assume integer oper-
ands, this format is sign-extended to 32 bits (see Flgure 5- 1) The ran%e of
an integer sj, represented in the short integer format, is 215 ¢ 57 g 21

In Figure 5-1, s=signed bit.

15 0
Short Integer Format
16 15 0
[ s S55555SSSSSSSS sTs I
Sign Extension of a Short Integer

Figure 5-1. Short Integer Format and Sign Extension of Short
Integer

5.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in two’s-
complement notation. The ran%e of an integer sp, represented in the single-
precision integer format, is - < sp < 231 -1, Figure 5-2 shows the
single-precision integer format.

31 0

Figure 5-2. Single-Precision Integer Format

5-2



Data Formats - Unsigned-Integer Formats

5.2 Unsigned-Integer Formats

Two unsigned-integer formats are supported on the TMS320C30: a 16-bit
short format and a 32-bit single-precision format. In extended-precision reg-
isters, the unsigned-integer operands use only bits 31-0; bits 39-32 remain

unchanged.

5.2.1 Short Unsigned-Integer Format

Figure 5-3 shows the 16-bit short unsigned-integer format, used for immedi-
ate unsigned-integer operands. For those instructions that assume un-
signed-integer operands, this format is zero-filled to 32 bits. In Figure 5-3
below, X = MSB (1 or 0).

15 0
| | §

Short Unsigned-integer
Format

31 16 15

0
0 00000000000000  O|X B
Zero Fill of a Short Unsigned Integer

Figure 5-3. Short Unsigned-Integer Format and Zero Fill

5.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integer format, the number is represented as
a 32-bit value, as shown in Figure 5-4.

31

Figure 5-4. Single-Precision Unsigned-Integer Format




Data Formats - Floating-Point Formats

5.3 Floating-Point Formats

All TMS320C30 fioating-point formats consist of three fields: an exponent
field (e), a single sign-bit field (s), and a fraction field (f). These are stored
as shown in Figure 5-5. The exponent field is a two’s-complement number.
The sign field and fraction field may be considered as one unit and referred to
as the mantissa field (man). The mantissa is used to represent a normalized
two’s-complement number. In a normalized representation, a most-signifi-
cant nonsign bit is implied, thus providing an additional bit of precision. The
value of a floating-point number x as a function of the fields ¢, s, and f is given
as

x= 01.fx 28 ifs=0
10.f x 28 ifs =1
0 if e = most negative two’s-complement value

for the specified exponent field width.

‘e 8 f

|—-— man (mantissa)—-——l

Figure 5-56. Generic Floating-Point Format

Three floating-point formats are supported on the TMS320C30. The first is a
short floating-point format for immediate floating-point operands, consisting
of a 4-bit exponent, 1 sign bit, and an 11-bit fraction. The second is a sin-
gle-precision format consisting of an 8-bit exponent, 1 sign bit, and a 23-bit
fraction. The third is an extended-precision format consisting of an 8-bit ex-
ponent, 1 sign bit, and a 31-bit fraction.

5.3.1 Short Floating-Point Format

5-4

In the short floating-point format, floating-point numbers are represented by
a two’s-complement 4-bit exponent field (e¢) and a two’s-complement 12-bit
mantissa field (man) with an implied most-significant nonsign bit.

15 12]|11]10 0

e s f

T yum—

Figure 5-6. Short Floating-Point Format
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Operations are performed with an implied binary point between bits 11 and
10. When the implied most-significant nonsign bit is made explicit, it is lo-
cated to the immediate left of the binary point. The floating-point two's-
complement number x in the short floating-point format is given by

x= 01.fx 2¢ ifs=0
10.f x 2¢ ifs=1
0 ife=-8s=0,f=0

The following reserved values must be used to represent zero in the short
floating-point format:

8

e -
s=0
f=0

The following examples illustrate the range and precision of the short float-
ing-point format:

Most Positive: x=(2-2") x27=25594 x 102

Least Positive: x=1x27 =78125 x 103

Least Negative:  x = (-1-2°11) x 2-7 = -7.8163 x 103

Most Negative:  x = -2 x 27 = -2.5600 x 102

5.3.2 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an
8-bit exponent field (e) and a two's-complement 24-bit mantissa field (man)
with an implied most-significant nonsign bit.

Operations are performed with an implied binary point between bits 23 and
22. When the implied most-significant nonsign bit is made explicit, it is lo-
cated to the immediate left of the binary point. The floating-point number x

is given by:
x= 01.f x 2¢ ifs=0
10.f x 28 ifs =1
0 ife=-128,s=0,f=0
31 24|23|22 0
e s f

.

!. man -t

Figure 5-7. Single-Precision Floating-Point Format

The following reserved values must be used to represent zero in the single-
precision floating-point format:

128

~~ 0 O
[ TIT]
OO

5-5
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The following examples illustrate the range and precision of the single-preci-
sion floating-point format.
Most Positive: x=(2-223) x2127 = 34028234 x 1038
Least Positive: x=1x 2127 = 58774717 x 10 -39
Least Negative: x = (-1 -2'23) x 2127 = 58774724 x 10-39
Most Negative:  x = -2 x 2127 = .3.4028236 x 1038

5.3.3 Extended-Precision Floating-Point Format

In the extended-precision format, the floating-point number is represented by
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied

most-significant nonsign bit.
Operations are performed with an implied binary point between bits 31 and
30. When the implied most-significant nonsign bit is made explicit, it is lo-
cated to the immediate left of the binary point. The floating-point number x

is given by
x= 01fx 28 ifs=0
10.f x 2¢ ifs =1
0 ife=-128,s=0,f=0
39 3z'|31|30 o
e 8 f
l,: man j!

Figure 5-8. Extended-Precision Floating-Point Format

The following reserved values must be used to represent zero in the extend-
ed-precision floating-point format:

128

e -
s=0
f=0

The following examples illustrate the range and precision of the extended-
precision floating-point format:
Most Positive: x=(2-231) x2127 = 34028236683 x 1038
Least Positive: x=1x 2127 =58774717541 x 10 -39
Least Negative:  x = (-1-2-31) x 2-127 = .5.8774717569 x 10-39
Most Negative:  x = -2 x 2127 = .3.4028236691 x 1038
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5.3.4 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and
outputs. These formats often require conversion from one floating-point for-
mat to another (e.g., short floating-point format to extended-precision float-
ing-point format). Format conversions automatically occur in hardware, with
no overhead, as a part of the floating-point operations. The four conversions
are shown below with examples of the conversion. When a floating-point
format zero is converted to a greater-precision format, it is always converted
to a valid representation of zero in that format. In the below figures, S = sign
bit of the exponent.

® Short floating-point format conversion to single-precision
floating-point format.
15 1211 10 0
IS XX xlyly ﬂ
Short Floating-Point Format
31 27 24 23 22 12 11 0

[s  sssxx  x|yly v|o 0
Single-Precision Floating-Point Format

In this format, the exponent field is sign-extended and the fraction field
filled with zeros.

® Short floating-point format conversion to extended-precision
floating-point format.

15 1211 10 0
lS XX x| y ly yI
Short Floating-Point Format
39 35 32 31 30 20 19 o
IS SSSxxx nyIy y|0 0

Extended-Precision Floating-Point Format

The exponent field in this format is sign-extended and the fraction field
filled with zeros.
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® Single-precision floating-point format conversion to extend-
ed-precision floating-point format.

31 24 23 22

|x xfyly v|

Single-Precision Floating-Point Format
39 32 31 30 8 7 0
[x x]y |y yjo 0
Extended-Precision Floating-Point Fprmat

The fraction field is filled with zeros.

° Extended-precision floating-point format conversion to sin-
gle-precision floating-point format.

39 32 31 30 8 7 0
[x x[vly y|z z|
Extended-Precision Floating-Point Format
31 24 23 22 0
|x x| vy v|

Single-Precision Floating-Point Format

The fraction field is truncated.
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5.4 Floating-Point Multiplication

A floating-point number a can be written in floating-point format as the fol-
lowing formula, where a( man) is the mantissa and a(exp) is the exponent.

a = a(man) x 23(exp)
The product of a and b is ¢, defined as
¢ =a x b =a(man) x b(man) x 2 (a(éxp)+b (exp))

c(man) = a(man) x b(man)
c(exp) = a(exp) + b(exp)

When performing floating-point multiplication, source operands are always
assumed to be in the single-precision floating-point format. If the source of
the operands is in short floating-point format, it is extended to the single-
precision floating-point format. If the source of the operands is in extend-
ed-precision floating-point format, it is truncated to single-precision format.
These conversions automatically occur in hardware with no overhead. All re-
sults of floating-point multiplications are in the extended-precision format.
These multiplications occur in a single cycle.

A flowchart for floating-point multiplication is shown in Figure 5-9. In step
1, the 24-bit source operand mantissas are multiplied, producing a 50-bit re-
sult c¢(man). (Note that input and output data are always represented as nor-
malized numbers.) In step 2, the exponents are added, yielding c(exp). Steps
3 through 6 check for special cases. Step 3 checks for whether c(man) in
extended-precision format is equal to zero. If c(man) is zero, step 7 sets
c(exp) to -128, thus yielding the representation for zero.

Steps 4 and 5 normalize the result. If a right shift of one is necessary, then in
step 8, c(man) is right-shifted one bit and one is added to c(exp). If a right
shift of two is necessary, then in step 9, c(man) is right-shifted two bits and
two is added to c(exp). Step 6 occurs when the result is normalized.

In step 10, c(man) is set in the extended-precision floating-point format.
Steps 11 through 18 check for special cases of c(exp). In step 14, if c(exp)
has overflowed (step 11) in the positive direction, then c(exp) is set to the
most-positive extended-precision format value. If c(exp) has overflowed in
the negative direction, then c(exp) is set to the most-negative extended-pre-
cision format value. If c(exp) has underflowed (step 12), then c is set to zero
(step 15); i.e., c(man) = 0 and c(exp) = -128.
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a(man)

b(man) afexp)
(1)

b(exp)
(2)

Muitiply mantissas

Add exponents

c(man) = a(man) * b(man)
(50-bit result)

c(exp) = a(exp) + b(exp)

-

Test for special cases of c(man)

Figure 5-9.
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c(exp) + 1 c(exp) + 2
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Put c(man) in extended
recision floating-point
ormat.
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(11) (12) (13)
c{exp) overflow c(exp) underflow c(exp) in range
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positive value, c(man) =

1§ c(man) < 0,
set ¢ to most
negative value.

|__L ’

Set c to final result

Jae)

f

c=a‘b

Fiowchart for Floating-Point Multiplication
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The following examples illustrate how floating-point multiplication is per-
formed on the TMS320C30. For these examples, the implied most-significant
nonsign bit is made explicit.

Example 5-1. Floating-Point Multiply (Both Mantissas = -2.0)

Let

a
b

-2.0 x 23(exp) = 10.00000000000000000000000 x 2 a(exp)
-2.0 x 2b(exP) = 10.00000000000000000000000 x 2 b(exp)

where a and b are both represented in binary form according to the normalized single-pre-
cision floating-point format. Then

10.00000000000000000000000 x 23(€xp)
x 10.00000000000000000000000 x 2b(€xP)

0100.0000000000000000000000000000000000000000000000 x 2(8( €xp) + b(exp))

To place this number in the proper normalized format, it is necessary to shift the mantissa two
places to the right and add two to the exponent. This yields

10.00000000000000000000000 x 2a(€xP)
% 10.00000000000000000000000 x 2b(€xp)

01.0000000000000000000000000000000000000000000000 x 2(a( €xp) + b(exp)+2)

In floating-point multiplication, the exponent of the result may overflow. This can occur
when the exponents are initially added or when the exponent is modified during normaliza-
tion.

Example 5-2. Floating-Point Multiply (Both Mantissas = 1.5)

Let

1.5 x 2a(éxp) = 01.10000000000000000000000 x 2 3(€xP)
1.5 x 2b(exp) = 01.10000000000000000000000 x 2 b(exp)

a
b

where a and b are both represented in binary form according to the single-precision float-
ing-point format. Then

01.10000000000000000000000 x 2a(€xP)
x 01.10000000000000000000000 x 20(exP)

0010.0100000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp))

To place this number in the proper normalized format, it is necessary to shift the mantissa
one place to the right and add one to the exponent. This yields

01.10000000000000000000000 x 22(exP)
x 01.10000000000000000000000 x 2b(exp)

01.00100000000000000000000000000000000000000000000 x 2 (a(éxp) +b(exp) +1)
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Example 5-3. Floating-Point Multiply (Both Mantissas = 1.0)
Let

= 1.0 x23(eXP) = 01.00000000000000000000000 x 2 a(exp)
= 1.0 x2b(exp) = 01.00000000000000000000000 x 2 b(exp)

where a and b are both represented in binary form according to the single-precision float-
ing-point format. Then

01.00000000000000000000000 x 23(€xP)
% 01.00000000000000000000000 x 2b(exP)

0001.0000000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp))

This number is in the proper normalized format. Therefore, no shift of the mantissa or mod-
ification of the exponent is necessary.

These examples have shown cases where the product of two normalized numbers can be
normalized with a shift of zero, one, or two. For all normalized inputs with the floating-point
format used by the TMS320C30, a normalized result can be produced by a shift of zero, one,
or two.

Example 5-4. Floating-Point Multiply Between Positive and Negative Numbers
Let

= 1.0 x22(exp) = 01 ooooooooooooooooooooooo x 2 a(exp)
= 2.0 x2b(exp) = 10.00000000000000000000000 x 2 blexp)

Then

01.00000000000000000000000 x 2a(€xp)
x 10.00000000000000000000000 x 2b(exp)

1110.0000000000000000000000000000000000000000000000 x 2 (a(éxp) + b(exp))
Theresultis ¢ = -2.0 x 2(a(exp) + b(exp))

Example 5-5. Floating-Point Multiply by Zero

All multiplications by a floating-point zero yield a result of zero (f = 0, s = 0, and exp =
-128).
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5.5 Floating-Point Addition and Subtraction

In floating-point addition and subtraction, two floating-point numbers a and
b can be defined as

a(man) x 23(éxp)

b(man) x 2b{(exp)

The sum (or difference) of a and b can be defined as

a+bh

(a(man) + (b(man) x 2 -(a(exp)-b(exp))yy x 2 a(exp),
if a(exp) > b(exp)

= ((a(man) x 2 -(b(exp)-a(exp)}y 4+ b( man)) x 2 b(exp),
if a(exp) < b(exp)

a
b

nn

Cc

The flowchart for floating-point addition is shown in Figure 5-10. Since this
flowchart assumes signed data, it is also appropriate for floating-point sub-
traction. In this figure, it is assumed that a(exp) < b(exp). In step 1, the
source exponents are compared, and c(exp) is set equal to the largest of the
two source exponents. In step 2, d is set to the difference of the two expo-
nents. In step 3, the mantissa with the smallest exponent, in this case
a(man), is right-shifted d bits in order to align the mantissas. After the man-
tissas have been aligned, they are added (step 4).

Steps 5 through 7 check for a special case of c(man). If c(man) is zero (step
5), then c(exp) is set to its most-negative value (step 8) to yield the correct
representation of zero. If c(man) has overflowed ¢ (step 6), then in step 9,
c(man) is right-shifted one bit and one is added to c(exp) In step 10, the
result is normalized. In steps 11 and 12, special cases of c(exp) are tested.
If c(exp) has overflowed, then c is set to the most-positive extended-precision
value if it is positive; otherwise, it is set to the most-negative extended-preci-
sion value.
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a(man) b{man) a(exp) b{exp)

1) Compare exponents
if a(exp) < = b(exp)

c(exp) = blexp)
else

3) Align mlntlms' cloxp) = a(oxp)
[Assume for simplicity
a(man) = a(man) >>d that alexp) < < = blexp)l

Discard LSBs i *

to keep a(man) in

extended-precision (2)| Subtract exponents

floating-point format d = blexp) — a(exp)

(4) Add mantissas

c(man) = a(man) + b{man)

Test for special cases of c(man)
) (6)

(Y]
k = # leading
¢(man) = 0 Overflow of ¢(man) non-significant
sign bits

c(man) = c(man) >> 1
c(exp) = clexp) + 1
Discard LSBs to keep in
extended-precision
floating-point format

®) (9)

-128 I c(man) << k
c(exp) = c{exp) —k

Test for special cases of c(exp)

am (12) (13)
c(exp) overflow c(exp) underflow c{exp) in range

1 1

(14) [if ¢(man) > o, set ¢ to zero (15)
set ¢ to most c(exp) = -128
positive value, c(man) = 0

If ¢(man) < 0,

set ¢ to most
negative value.

(16)

Set c to final result

c=a+b

Figure 5-10. Flowchart for Floating-Point Addition
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The following examples describe the floating-point addition and subtraction
operations. It is assumed that the data is in the extended-precision floating-
point format.

Example 5-6. Floating-Point Addition

In the case of two normalized numbers to be summed, let

a = 1.5 = 01.1000000000000000000000000000000 x 20
b = 0.5 = 01.0000000000000000000000000000000 x 2-1

It is necessary to shift b to the right by one so that a and b have the same
exponent. This yields

b = 0.5 = 00.1000000000000000000000000000000 x 2°

Then

01.1000000000000000000000000000000 x 20
+ 00.1000000000000000000000000000000 x 20

010.0000000000000000000000000000000 x 2°

As in the case of multiplication, it is necessary to shift the binary point one
place to the left and to add one to the exponent. This yields

01.1000000000000000000000000000000 x 29
+ 00.1000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 21

Example 5-7. Floating-Point Subtraction

A subtraction is performed in this example. Let

a = 01.0000000000000000000000000000001 x 2°
b = 01.0000000000000000000000000000000 x 20

The operation to be performed is a—b. The mantissas are already aligned since
the two numbers have the same exponent. The result is a large cancellation
of the upper bits, as shown below.

01.0000000000000000000000000000001 x 20
- 01.0000000000000000000000000000000 x 20

00.0000000000000000000000000000001 x 29

The result must be normalized. In this case, a left-shift of 31 is required. The
exponent of the result is modified accordingly. The result is

01.0000000000000000000000000000001 x 20
- 01.0000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 2-31




Floating-Point Operations - Addition/Subtraction

Example 5-8. Floating-Point Addition with a 32-Bit Shift

This example illustrates a situation where a full 32-bit shift is necessary to
normalize the result. Let

a=01.1111111111111111111111111111111 x 2127
b = 10.0000000000000000000000000000000 x 2127
The operation to be performed is a + b.

01.1111111111111111111111111111111 x 2127
+ 10.0000000000000000000000000000000 x 2127

11.1111111111111111111111111111111 x 2127
Normalizing the result requires a left-shift of 32 and a subtraction of 32 from
the exponent. The result is

01.1111111111111111111111111111111 x 2127
+_10.0000000000000000000000000000000 x 2127

10.0000000000000000000000000000000 x 295

Example 5-9. Floating-Point Addition/Subtraction and Zero

When floating-point addition and subtraction is performed with a floating-
point 0, , the following identities are satisfied:

a+0=a (a#0)
0+0=0
O-a=-a (a#0)
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5.6 Normalization Using the NORM Instruction

The NORM instruction takes an extended-precision floating-point number,
assumed to be unnormalized, and normalizes it. Since the number is assumed
to be unnormalized, no implied most-significant nonsign bit is assumed. The
NORM instruction executes the following three steps:

1) Locate the most-significant nonsign bit of the floating-point number.
2)  Left-shift to normalize the number.
3) Adjust the exponent.

Given the extended-precision floating-point value a to be normalized, the
normalization (norm ()) is performed as shown in Figure 5-11.
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!

Test for special cases of a(man)

2
(1) Leading non-significant
a(man) = 0 sign bits.
k =# leading
non-significant
! Y sign bits

@ clexp) = —128 Sign-extended a(man) 1 bit @)
c(man) = a(man) << k
c(exp) = a(exp) — k

1

Remove most-significant non-sign bit

()

Y
Test for special cases of c(exp)

(6) @)

c(exp) underflow  c(exp) in range

!

®
clexp) = —128
No change to c(man)

Y ) —

Set ¢ to final resuit

!

¢ = norm(a)

)

Figure 5-11. Flowchart for NORM Instruction Operation
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Example 5-10. NORM Instruction

Assume that an extended-precision register contains the value

man = 00000000000000000001000000000001, exp = O
When the normalization is performed on a number assumed to be unnormal-
ized, the binary point is assumed to be

man = 0.0000000000000000001000000000001, exp =0
Zhis number is then sign-extended one bit so that the mantissa contains 33

its.

man = 00.0000000000000000001000000000001, exp =0
The intermediate result after the most-significant nonsign bit is located and
the shift performed is

man = 01.0000000000010000000000000000000, exp = -19

The final 32-bit value output after removing the redundant bit is
man = 00000000000010000000000000000000, exp = -19 u

The NORM instruction is useful for counting the number of leading zeros or
leading ones in a 32-bit field. If the exponent is initially zero, the absolute
value of the final value of the exponent is the number of leading ones or zeros.
This instruction is also useful for manipulating unnormalized floating-point
numbers.
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5.7 Rounding: The RND Instruction

5-20

The RND instruction rounds a number from the extended-precision floating-
point format to the single-precision floating-point format. Rounding is similar
to floating-point addition. Given the number a to be rounded, the following
operation is performed first.

¢ = a(man) x 23(éxp) + (1 x 2 (a(exp)-24))
Next a conversion from extended-precision floating-point to single-precision

floating-point format is performed. Given the extended-precision floating-
point value, the rounding (rnd()) is performed as shown in Figure 5-12.



Floating-Point Operations - Rounding

a 1x2 a(exp) —24

! f

Add a(man) and 1/2 an LSB

c{man) = alman} + —24

)

Test for special cases of c(man)

c¢(man) = 0 Overflow of c(man) No special case

c(exp) = —128 c(man) = ¢(man) >> 1
c(exp) = a(exp) + 1

1

Test for special cases of c(exp)

c(exp) overflow c(exp) in range

If c(man) > 0,
set ¢ to most-
positive single-
precision value.

It ¢(man) < 0,
set ¢ to most-
negative single-
precision value.

| ! \ Y

Set 8 LSBs of c(man) to zero

?

¢ = rnd(a)

Figure 5-12. Flowchart for Floating-Point Rounding by the RND
Instruction
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5.8 Floating-Point to Integer Conversion

5-22

Floating-point to integer conversion, using the FIX instructions, allow ex-
tended-precision floating-point numbers to be converted to single-precision
integers in a single cycle. The floating-point to integer conversion of the value
x will be referred to here as fix(x). The conversion will not overflow if a, the
number to be converted, is in the range:

23 535231 -1
First, it is necessary to be certain that

a(exp) < 30
If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow oc-
curs in the negative direction, the output is the most negative integer. If

a(exp) is within the valid range, then a(man), with implied bit included, is
sign-extended and right-shifted (rs) by the amount

rs = 31 - a(exp)
This right-shift (rs) shifts out those bits corresponding to the fractional part
of the mantissa. For example:

If 0 < x < 1, then fix(x) = 0.
If -1 < x <0, then fix(x) = -1.

The flowchart for the floating-point to integer conversion is shown in Figure
5-13.
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}

Test for speclal cases of a(exp)

a(exp) in range

a(exp) > 30 rs = 31 - a(exp)

) Y
Overflow Shift

If a(man) > 0,
¢ = most positive

integer.

If alman) < O,
¢ = most negative

integer.

— ’

Set c to final resuit

c =a(man) > >rs

¢ = fix(a)

Figure 5-13. Flowchart for Floating-Point to Integer Conversion
by FIX Instructions
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5.9 Integer to Floating-Point Conversion Using the FLOAT

5-24

Instruction
Integer to floating-point conversion, using the FLOAT instruction, allows sin-

gle-precision integers to be converted to extended-precision floating-point
numbers. The flowchart for this conversion is shown in Figure 5-14.

!

c¢(man)
c(exp)

o
w
=]

Y

Test for special cases of c(man)

Leading non-significant
c(man) = 0 sign bits.

k =# leading
{ non-significant
Y i sign bits
cexp) = —128 c(man) = c(man) << k
c(exp) = 30 — k

!

Remove most significant
non-sign bit.

Set ¢ to final result

?

¢ = float (a)

Figure 5-14. Flowchart for Integer to Floating-Point Conversion
Using the FLOAT Instruction
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Section 6

Addressing

The TMS320C30 supports five groups of powerful addressing modes. Six
types of addressing may be used within the groups, which allow access of
data from memory, registers, and the instruction word. This section details the
operation, encoding, and implementation of the addressing modes. Also dis-
cussed is the management of system stacks, queues, and deques in memory.
The major topics in this section are:

o Types of Addressing (Section 6.1 on page 6-2)
- Register
- Direct
- Indirect
—  Short-immediate
- Long-immediate
- PC-relative

o Groups of Addressing Modes (Section 6.2 on page 6-18)
- General addressing modes
—  Three-operand addressing modes
- Parallel addressing modes
- Long-immediate addressing mode
- Conditional-branch addressing modes

® Circular Addressing (Section 6.3 on page 6-22)
] Bit-Reversed Addressing (Section 6.4 on page 6-26)

® System Stack Management (Section 6.5 on page 6-27)
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6.1 Types of Addressing

Six types of addressing allow access of data from memory, registers, and the
instruction word. They are:

L4 Register

® Direct

® Indirect

] Short-immediate
® Long-immediate

® PC-relative

Some types of addressing are appropriate for some instructions and not others.
For this reason, the types of addressing are used in the five different groups
of addressing modes as follows:

® General addressing modes (G):
- Register
- Direct
- Indirect
- Short-immediate

®  Three-operand addressing modes (T):
- Register
- Indirect

[ Parallel addressing modes (P):
- Register
- Indirect

® Long-immediate addressing mode
- Long-immediate

() Conditional-branch addressing modes (B):
- Register
- PC-relative

The six types of addressing will be discussed first, followed by the five groups
of addressing modes.

6.1.1 Register Addressing

6-2

In register addressing, the operand is contained in a CPU register, as shown
in the example below.

ABSF R1 ; R1 = |R1]|

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 6-1.
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Table 6-1. CPU Register/Assembler Syntax and Function

CPU REGISTER [ASSEMBLER ASSIGNED
ADDRESS SYNTAX FUNCTION

00h RO Extended-precision register
01h R1 Extended-precision register
02h R2 Extended-precision register
03h R3 Extended-precision register
04h R4 Extended-precision register
05h R5 Extended-precision register
06h R6 Extended-precision register
07h R7 Extended-precision register
08h ARO Auxiliary register
0Sh AR1 Auxiliary register
0Ah AR2 Auxiliary register
0Bh AR3 Auxiliary register
0Ch AR4 Auxiliary register
0Dh AR5 Auxiliary register
OEh AR6 Auxiliary register
OFh AR7 Auxiliary register
10h DP Data page pointer
11h {RO Index register O
12h IR1 Index register 1
13h BK Block size
14h SP Active stack pointer
15h ST Status register
16h IE CPU/DMA interrupt enable
17h IF CPU interrupt flags
18h 10F 1/0 flags
19h RS Repeat start address
1Ah RE Repeat end address
1Bh RC Repeat counter

6.1.2 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight least-significant bits of the data page pointer (DP) with the 16 least-
significant bits of the instruction word (expr). This results in 256 pages (64
K words per page), giving the programmer a large address space without
needing to change the page pointer. The syntax and operation for direct ad-
dressing are listed below.

Syntax: @expr
Operation: address = DP concatenated with expr

Figure 6-1 shows the formation of the data address. Example 6-1 gives an
instruction example with data before and after instruction execution.
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31 16 15 0

Instruction

Word expr
31 8 7 0
DP —#=} X X...X X page
31 24 23Y Y o
00..00 address
31 | 0
operand

Figure 6-1. Direct Addressing

n Example 6-1. Direct Addressing

ADDI @OBCDEh,R7

Before Instruction: After Instruction:

DP = 8Ah DP = 8Ah

R7 = Oh R7 = 12345678h

Data at 8BABCDEh = 12345678h Data at SABCDEh = 12345678h

6.1.3 Indirect Addressing
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Indirect addressing is used to specify the address of an operand in memory
through the contents of an auxiliary register, optional displacements, and in-
dex registers. Only the 24 least-significant bits of the auxiliary registers and
index registers are used in indirect addressing. This arithmetic is performed
by the auxiliary register arithmetic units (ARAUs) on these lower 24 bits and
is unsigned. The upper eight bits are unmodified.

The flexibility of indirect addressing is possible because the ARAUs on the
TMS320C30 are used to modify auxiliary registers in parallel with operations
within the main CPU. Indirect addressing is specified by a five-bit field in the
instruction word, referred to as the mod field. A displacement is either an ex-
plicit unsigned 8-bit integer contained in the instruction word or an implicit
displacement of one. Two index registers, IRO and IR1, can also be used in
indirect addressing. In some cases, an addressing scheme using circular or
bit reversed addressing is optional. The mechanism for generating addresses
in circular addressing is discussed in Section 6.3, bit reversed in Section 6.4.

Table 6-2 lists the various kinds of indirect addressing, along with the value
of the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 18 examples show the operation for each kind of indi-
rect addressing.
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Table 6-2. Indirect Addressing

MOD FIELD|  SYNTAX | OPERATION [ DESCRIPTION
INDIRECT ADDRESSING WITH DISPLACEMENT

00000 *+ARnN(disp) addr = ARn + disp With pre-displacement add

00001 *-ARn(disp) addr = ARn - disp With pre-displacement subtract

00010 *++ARn(disp) addr = ARn + disp With pre-displacement add and modify
ARn = ARn + disp

00011 *--ARn(disp) addr = ARn - disp With pre-displacement subtract and
ARn = ARn - disp modify

00100 *ARn++(disp) addr = ARn With post-displacement add and
ARn = ARn + disp modify

00101 *ARn--(disp) addr = ARn With post-displacement subtract and
ARn = ARn - disp modify

00110 *ARn++(disp)% | addr = ARn With post-displacement add and
ARn = circ(ARn + disp)| circular modify

00111 *ARn--(disp)% addr + ARn With post-displacement subtract and
ARn = circ(ARn - disp) | circular modify

INDIRECT ADDRESSING WITH INDEX REGISTER IR0

01000 *+ARn(IRO) addr = ARn + IRO With pre-index (IR0O) add

01001 *-ARn(IRO) addr = ARn - IRO With pre-index (IRO) subtract

01010 *++ARn(IR0O) addr = ARn + IR0 With pre-index (IR0) add and modify
ARn = ARn + IRO

01011 *--ARn(IRO) addr = ARn - {RO With pre-index (IRO) subtract and
ARn = ARn - IR0 modify

01100 *ARn++(IR0O) addr = ARn With post-index {IR0O) add and modify
ARn = ARn + IRO

01101 *ARn--(IR0) addr = ARn With post-index (IR0) subtract and
ARn = ARn - IR0 modify

01110 *ARn++(IR0)% addr = ARn With post-index (IR0) add and
ARn = circ(ARn + IRO) | circular modify

01111 *ARn--(IR0)% addr = ARn With post-index (IR0) subtract and
ARn = circ(ARn - {R0O) | circular modify

LEGEND:

addr = memory address

ARn = auxiliary register ARO - AR7

IRn = index register IRO or IR1

disp = displacement

++ = add and modify

-- = subtract and modify

circ() = address in circular addressing

% = where circular addressing is performed

B = where bit-reversed addressing is performed
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Table 6-2. Indirect Addressing (Concluded)

{MOD FIELD]  SYNTAX | OPERATION | DESCRIPTION
INDIRECT ADDRESSING WITH INDEX REGISTER IR1

10000 *+ARn(IR1) addr = ARn + IR1 With pre-index (IR1) add

10001 *-ARn(IR1) addr = ARn - IR1 With pre-index (IR1) subtract

10010 *++ARn(IR1) addr = ARn + IR1 With pre-index (IR1) add and modify
ARn = ARn + IR1 :

10011 *--ARn(IR1) addr = ARn - IR1 With pre-index (IR1) subtract and
ARn = ARn - IR1 modify

10100 *ARn++(IR1) addr = ARn With post-index (IR1) add and modify
ARn = ARn + IR1

10101 *ARn--(IR1) addr = ARn With post-index (IR1) subtract and
ARn = ARn - IR1 modify

10110 *ARn++(1R1)% addr = ARn With post-index (IR1) add and
ARn = circ(ARn + IR1) | circular modify

10111 *ARn--(IR1)% addr = ARn With post-index (IR1) subtract and
ARn = circ(ARn - IR1) | circular modify

INDIRECT ADDRESSING (SPECIAL CASES)

11000 *ARn addr = ARn Indirect

11001 *ARn++(IR0)B addr = ARn With post-index (IR0) add and
ARn = B(ARn + |IR0O) bit-reversed modify

LEGEND:

addr = memory address

ARn = auxiliary register ARO - AR7

IRn = index register IRO or IR1

disp = displacement

++ = add and modify

-- = subtract and modify

circ() = address in circular addressing

9 = where circular addressing is performed

B = where bit-reversed addressing is performed
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Example 6-2. Auxiliary Register Indirect

The address of the operand to be fetched is contained in an auxiliary register (ARn).

Operation: operand address = ARn
Assembler Syntax: *ARn
Modification Field: 11000
31 24 23 0
ARn—® x X address
31 ‘} 0
operand
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Example 6-3. Indirect with Pre-Displacement Add

The address of the operand to be fetched is the sum of an auxiliary register ({ARn) and the
displacement (disp). The displacement is either an eight-bit unsigned integer contained in
the instruction word or an implied value of 1.

Operation: operand address = ARn+disp
Assembler Syntax: *+ARn(disp)
Modification Field: 00000
31 24 23 0
ARn x X address

31 87 0 —I

disp | O 0...0 integer [—®=(+)

31 ‘ 0

operand

o

Example 6-4. Indirect with Pre-Displacement Subtract

The address of the operand to be fetched is the contents of an auxiliary register (ARn) minus
the displacement (disp). The displacement is either an eight-bit unsigned integer contained
in the instruction word or an implied value of 1.

Operation: operand address = ARn—disp
Assembler Syntax: *=ARn(disp)
Modification Field: 00001
31 24 23 0
ARn X x address
31 8 7 0 |
disp | O 0..0 0 integer [—®(-)

31 ‘ 0

operand
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Example 6-5. Indirect with Pre-Displacement Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register (ARn) and the
displacement (disp). The displacement is either an eight-bit unsigned integer contained in
the instruction word or an implied value of 1. After the data is fetched, the auxiliary register
is updated with the address generated.

Operation: operand address = ARn+disp

ARn=ARn+disp

Assembler Syntax: *++ARn(disp)
Modification Field: 00010

31 24 23 0

ARn—= x X address
[}
31 8 7 0

disp | O 0...0 (o] integer —o=(+)

31 t 0

operand

Example 6-6. indirect with Pre-Displacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn) minus
the displacement (disp). The displacement is either an eight-bit unsigned integer contained
in the instruction word or an implied value of 1. After the data is fetched, the auxiliary reg-
ister is updated with the address generated.

Operation: operand address = ARn-disp
_ ARn=ARn+disp

Assembler Syntax: *--ARn(disp)
Modification Field: 00010

31 24 23 0

ARn—=1 x X address
| A
31 8 7 0

disp | O 0...0 0 integer —e-(-)

31 r_ 0

operand
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Example 6-7. Indirect with Post-Displacement Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the displacement (disp) is added to the auxiliary register. The dis-
placement is either an eight-bit unsigned integer contained in the instruction word or an

implied value of 1.

Operation:

Assembler Syntax:

operand address = ARn
ARn=ARn+disp

*ARn++(disp)

Modification Field: 00100
31 24 23 0
ARn x X address
31 8 7 0 1
disp | O 0...0 0 integer [ (+)
31 0
operand

Example 6-8. Indirect with Post-Displacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the displacement (disp) is subtracted from the auxiliary register. The
displacement is either an eight-bit unsigned integer contained in the instruction word or an

implied value of 1.

Operation: operand address = ARn
ARn=ARn-disp
Assembler Syntax: *ARn--(disp)
Modification Field: 00101
31 24 23 0
ARn —%1 x x address
31 8 7 0 1
disp| o0 0...0 0 integer [—®(-)
31 0
operand
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Example 6-9. Indirect with Post-Displacement Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the displacement (disp) is added to the contents of the auxiliary re-
gister using circular addressing. This result is used to update the auxiliary register. The
displacement is either an eight-bit unsigned integer contained in the instruction word or an

implied value of 1.

Operation: operand address = ARn
ARn=circ(ARn+disp)
Assembler Syntax: *ARn++(disp)%
Modification Field: 00110
31 24 23 0
ARn x x address
(%)
31 8 7 0 |
disp |0 0...0 0 integer —(+)
31 0
operand

Example 6-10. Indirect with Post-Displacement Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the displacement (disp) is subtracted from the contents of the auxil-
iary register using circular addressing. This result is used to update the auxiliary register.
The displacement is either an eight-bit unsigned integer contained in the instruction word
or an implied value of 1.

Operation: operand address = ARn
ARn=circ(ARn-disp)
Assembler Syntax: *ARn--(disp)%
Modification Field: 00111
31 24 23 0
ARn X X address
(%)
31 8 7 0 |
disp | O 0...0 0 integer (-]
31 0
operand
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Example 6-11. Indirect with Pre-Index Add

The address of the operand to be fetched is the sum of an auxiliary register (ARn) and an
index register (IRO or IR1). generated.

Operation: operand address = ARn+IRm

Assembler Syntax: *+ARn(IRm)

Modification Field: 01000 if m=0

10000 if m=1
31 24 23 0
ARn X X address
31 24 23 0
IRm X x index —o(+)
31 l 0
operand

Example 6-12. Indirect with Pre-Index Subtract

The address of the operand to be fetched is the difference of an auxiliary register (ARn) and
an index register (IR0 or IR1).

Operation: operand address = ARn-IRm

Assembler Syntax: *-ARn(IRm)

Modification Field: 01001 if m=0

10001 if m=1
31 24 23 0
ARn % X address
31 24 23 0
IRM —m] X index =
31 0
operand
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Example 6-13. Indirect with Pre-index Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register (ARn) and an
index register (IR0 or IR1). After the data is fetched, the auxiliary register is updated with

the address generated.

Operation:

Assembler syntax:

operand address = ARn+IRm

ARn=ARn+IRm

*++ARn(IRm)

Modification Field: 01010 if m=0
10010 ifm=1
31 24 23
ARn X X address
31 24 23 0

IRM —pf % x index —e(+)

31 i
operand

Example 6-14. Indirect with Pre-Index Subtract and Modify

The address of the operand to be fetched is the difference of an auxiliary register (ARn) and

an index register (IRO or IR1).

auxiliary register.

Operation: operand address = ARn-IRm
ARn=ARn-IRm
Assembler Syntax: “--ARn(IRm)
Modification Field: 01011 if m=0
10011 if m=1
31 24 23
ARn—®1 x x address
[
31 24 23 0
IRm —f X index f—t(—)
31 t
operand

The resulting address becomes the new contents of the

6-13
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Example 6-15. Indirect with Post-Index Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the index register (IR0 or IR1) is added to the auxiliary register.

Operation:

Assembler Syntax:

operand address = ARn
ARn=ARn+IRm

*ARn++(1Rm)

Modification Field: 01100 if m=0
10100 if m=1
31 24 23 0
ARn x x address
31 24 23 0 1
Rm — x index —(+)
31 0
operand

Example 6-16. Indirect with Post-Index Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the index register (IR0 or IR1) is subtracted from the auxiliary regis-

ter.

Operation: operand address = ARn
ARn=ARn-1Rm
Assembler Syntax: *ARn--(I1Rm)
Modification Fieid: 01101 if m=0
10101 if m=1
31 24 23 0
ARn x x address
31 24 23 0 ?
IRm—ug x index —(-)
31 0
operand
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Example 6-17. Indirect with Post-Index Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the index register (IR0 or IR1) is added to the auxiliary register. This
value is evaluated using circular addressing and replaces the contents of the auxiliary register.

Operation:

Assembler Syntax:

operand address = ARn
ARn=circ(ARn+IRm)

*ARn++(IRm)%

Modification Field: 01110 if m=0
10110 if m=1
31 24 23 1]
ARn X X address
31 24 23 o U
IRmM —af x index —=(+)
31
operand

Example 6-18. Indirect with Post-Index Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the index register (IR0 or IR1) is subtracted from the auxiliary regis-
ter. This value is evaluated using circular addressing and replaces the contents of the auxil-

iary register.

Operation:

Assembler Syntax:

operand address = ARn
ARn=circ(ARn-IRm)

*ARn--(IRm%

Modification Field: 01111 if m=0
10111 if m=1
31 24 23
ARn b 4 b address
31 24 23 o ‘91"’
IRM —f x x index —(-)
31
operand
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Example 6-19. Indirect with Post-Index Add and Bit-Reversed Modify

The address of the operand to be fetched is the contents of an auxiliary register (ARn). After
the operand is fetched, the index register (IR0) is added to the auxiliary register. This addi-
tion is performed with a reverse-carry propagation and can be used to yield a bit-reversed
(B) address. This value repiaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn=B(ARn+IR0)
Assembler Syntax: *ARn++(IR0)B
Modification Field: 11001
31 24 23 0
ARn—# x X address
31 24 23 0 (?)
IRM —anf & x index —=(+)
31 0
operand

6.1.4 Short-lmmediate Addressing

In short-immediate addressing, the operand is a 16-bit immediate value con-
tained in the 16 least-significant bits of the instruction word (expr). De-
pending upon the data types assumed for the instruction, the short-immediate
operand may be a two's-complement integer, an unsigned integer, or a float-
ing-point number. The syntax for this mode is listed below.

Syntax: expr

Example 6-20 gives an instruction example with before and after instruction
data.

Example 6-20. Short-Immediate Addressing

SuBI 1,RO
Before Instruction: After Instruction:
RO = Oh RO = OFFFFFFFFh
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6.1.56 Long-lImmediate Addressing

In long-immediate addressing, the operand is a 24-bit immediate value con-
tained in the 24 least-significant bits of the instruction word (expr). The syn-
tax for this mode is listed below.

Syntax: expr

Example 6-21 gives an instruction example with before and after instruction
data.

Example 6-21. Long-Immediate Addressing

BR 8000h
Before Instruction: After Instruction:
PC = 0h PC = 8000h

6.1.6 PC-Relative Addressing

PC-relative addressing is used for branching. It replaces the value of the PC m
based upon the contents of the 16 least significant bit of the instruction word.

The assembler takes the src (a label or address) specified by the user and
generates a displacement. If the branch is a standard branch, this displace-

ment is equal to the label - (PC+1). If the branch is a delayed branch, this
displacement is equal to the label - (PC+3).

The displacement is stored as a 16-bit signed integer in the least significant
bits of the instruction word.

Syntax: expr
Example 6-22 gives an instruction example with before and after instruction
data.
Example 6-22. PC-Relative Addressing
BU NEWPC ; pc=1, NEWPC=5, displacement=3
Before Instruction: After Instruction:
PC = 1h PC = 5h
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6.2 Groups of Addressing Modes

The types of addressing are used to form the following five groups of ad-
dressing modes:

General addressing modes (G)
Three-operand addressing modes (T)
Parallel addressing modes (P)
Long-immediate addressing mode
Conditional-branch addressing modes (B)

These groups of addressing modes are discussed in the followinig sections.

6.2.1 General Addressing Modes

Instructions that use the general addressing modes are general-purpose in-
structions, such as ADDI, MPYF, and LSH. Such instructions are usually of
the form:

dst operation src — dst

where the destination operand is signified by dst, the source operand by sre,
and ‘operation’ defines an operation to be performed using the general ad-
dressing modes to specify certain operands. Bits 31-29 are zero, indicating
general addressing mode instructions. Bits 22 and 21 specify the general ad-
dressing mode (G) field, which defines how bits 15 through 0 are to be in-
terpreted for addressing the src operand.

Options for bits 22 and 21 (G field) are as follows:
0 0 register (alt CPU registers unless specified otherwise)
01 direct
10 indirect
11 immediate

If the src and dst fields contain register specifications, the value in these fields
contains the CPU register addresses as defined by Table 6-1. For the general
addressing modes, the following values of ARn are valid:

ARn,0<n<7
Figure 6-2 shows the encoding for the general addressing modes. The nota-

tion ‘modn’ indicates the modification field that goes with the ARn field. Refer
to Table 6-2 for further information.

31 29 28 2322 21 20 16 15 1110 87 54 0
000 aperation 0 0 dst 0 00 00O0OCOO0O0 Of src
0 0 O operation 0 1 dst direct
0 0O operation 10 dst modn T ARnT disp
0 0 0 operation 11 dst immediate
| ¢ | Destination | Source Operands

Figure 6-2. Encoding for General Addressing Modes
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6.2.2 Three-Operand Addressing Modes

Instructions that use the three-operand addressing modes, such as ADDI3,
LSH3, CMPF3. or XOR3, are usually of the form:

SRC1 operation SRC2 - dst

where the destination operand is signified by dst, the source operands by
SRC1 and SRC2, and ‘operation’ defines an operation to be performed. Note
that the ‘3’ can be omitted from three-operand instructions.

Bits 31-29 are set to the value of 001, indicating three-operand addressing
mode instructions. Bits 22 and 21 specify the three-operand addressing mode
(T) field, which defines how bits 15-0 are to be interpreted for addressing the
SRC operands. Bits 15-8 are used to define the SRC1 address, and bits 7-0
to define the SRC2 address. Options for bits 22 and 21 (T) are as follows:

T SRC1 SRC2
00 Register Register
01 Indirect Register
10 Register Indirect
11 Indirect Indirect

Figure 6-3 shows the encoding for three-operand addressing. If the SRC1
and SRC2 fields use the same auxiliary register, both addresses are correctly
generated. However, only the value created by the SRC1 field is saved in the
auxiliary register specified. The assembler issues a warning if this condition
is specified by the user.

The following values of ARn and ARm are valid:

ARn O <ng7
ARmO <sm<7

The notation "modm” or “modn” indicates the modification field goes with the
ARm or ARn field respectively. Refer to Table 6-2 for further information.

In indirect addressing of the three-operand addressing mode, displacements
(if used) are allowed of 0 or 1, and the index registers (IRO and IR1) can be
used. The displacement of 1 is implied and is not explicitly coded in the in-
struction word.

31 29 28 2322 21 20 16 15 1312 1110 87 54 32 o]
0 0 1 operation 00 dst 0 0 0 | srcl 0 00 src2
0 0 1 operation 0 1 dst modn I ARn 0 0O src2
0 0 1 operation 10 dst 0 0 0 | srct modn ARn
0 0 1 operation 11 dst modn I ARn modm ARm
ool | SRC1 I SRC2 I

Figure 6-3. Encoding for Three-Operand Addressing Modes
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6.2.3 Parallel Addressing Modes

Instructions that use parallel addressing (indicated by || (two vertical bars))
allow for the greatest amount of parallelism possible. The destination oper-
ands are indicated as d1 and d2, signifying dst1 and dst2, respectively (see
Figure 6-4). The source operands, signified by src1 and src2, use the ex-
tended-precision registers. The parallel operation to be performed is notated
as ‘operation’.

31 30 29 2625 24 23 22 21 1918 16 15 1110 87 32 0
I 10 l operation l P E1 le] srci T src2 r modn T ARn ] modm I ARm l
I sre3 I srca l

6-20

Figure 6-4. Encoding for Parallel Addressing Modes

The parallel addressing mode (P) field specifies how the operands are to be
used, i.e., whether they are source or destination. The specific relationship
between the P field and the operands is detailed in the description of the in-
dividual parallel instructions (see Section 11). However, the operands are al-
ways encoded in the same way. Bits 31 and 30 are set to the value of 10,
indicating parallel addressing mode instructions. Bits 25 and 24 specify the
parallel addressing mode (P) field, which defines how bits 21-0 are to be in-
terpreted for addressing the src operands. Bits 21-19 are used to define the
src1 address, bits 18-16 to define the src2 address, bits 15-8 the src3 address,
and bits 7-0 the src4 address. The notation ‘'modn’ and ‘modm’ indicate
which modification field goes with which ARn or ARm (auxiliary register)
field, respectively. The parallel addressing operands are listed below.

src1 0 < sre? < 7 (extended-precision registers R0O-R7)
sre2 0 < sre2 < 7 (extended-precision registers R0O-R7)
di If O, dst7 is RO. If 1, dst7 is R1.

d2 If 0, dst2 is R2. If 1, dst2 is R3.

P 0<P<3

sre3  indirect (disp = 0, 1, IR0, IR1)

src4 indirect (disp = 0, 1, IRQ, IR1)

As in the three-operand addressing mode, indirect addressing in the parallel
addressing mode allows for displacements of O or 1 and the use of the index
registers (IR0 and IR1). The displacement of 1 is implied and is not explicitly
coded in the instruction word.

In the encoding shown for this mode in Figure 6-4, if the sre3 and src4 fields
use the same auxiliary register, both addresses are correctly generated, but
only the value created by the sre3 field is saved in the auxiliary register speci-
fied. The assembler issues a warning if this condition is specified by the user.
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6.2.4 Long-immediate Addressing Mode

31

The long-immediate addressing mode is used to encode the program control
instructions (BR, BRD, and CALL), for which it is useful to have a 24-bit ab-
solute address contained in the instruction word. The unconditional branches,
BR (standard) and BRD (delayed), use the long-immediate addressing mode.
Bits 31-25 are set to the value of 0110000, indicating long-immediate ad-
dressing mode instructions. Selection of bit 24 determines the type of branch:
D = O for a standard branch or D = 1 for a delayed branch. The long-immed-
iate operand is the 24-bit src. These instructions are encoded as shown in
Figure 6-5.

25 24 23 0

lo 1 1 0 0 0 ofD] src ]

Figure 6-5. Encoding for Long-Immediate Addressing Mode

6.2.5 Conditional-Branch Addressing Modes

Instructions using the: conditional-branch addressing modes (Bcond,
BcondD, CALLcond, DBcond, and DBcondD) can perform a variety of con-
ditional operations. Bits 31-27 are set to the value of 01101, indicating con-
ditional-branch addressing mode instructions. Bit 26 is set to O or 1, the
former selects DBcond, the latter Bcond. Selection of bit 25 determines the
conditional-branch addressing mode (B). If B = 0, register addressing is
used; if B = 1, PC-relative addressing is used. Selection of bit 21 sets the type
of branch: D = Q for a standard branch or D = 1 for a delayed branch. The
condition field (cond) specifies the condition checked to determine what ac-
tion to take, i.e., whether or not to branch (see Section 11 for a list of condi-
tion codes). Figure 6-6 shows the encoding for conditional-branch
addressing.

DBcond(D):

31 2726 2524 222120 1615 54 0
fo 1 1 o 1}to[B|l ARn [D] cond o 0o 00000000 0] screg. |
Bcond(D): I l
Jo 1 1 0 1f1]{Bjo o o]D] cond | immediate |

l src I

Figure 6-6. Encoding for Conditional-Branch Addressing Modes
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6.3 Circular Addressing

6-22

Many algorithms, such as convolution and correlation, require the implemen-
tation of a circular buffer in memory. In convolution and correlation, the cir-
cular buffer is used to implement a sliding window which contains the most
recent data to be processed. As new data is brought in, the new data over-
writes the oldest data. Key to the implemention of a circular buffer is the im-
plementation of a circular addressing mode. This section describes the circular
addressing mode of the TMS320C30.

The blocksize register (BK) specifies the size of the circular buffer. Informa-
tion concerning the lower 16 bits of the BK register plus a user-selected aux-
iliary register (ARn) are used to specify the bottom of the circular buffer. The
information concerning the BK register is the location of the the first 1 bit,
counting from the most-significant bit to the least-significant bit, in the lower
16 bits. With the location of the first 1 bit specified as bit N, the address at
the top of the buffer is referred to as the effective base (EB) and is equal to
bits 31 through (N+1) of ARn with bits N through 0 of EB being zero.

Figure 6-7 illustrates the relationships between the blocksize register (BK), the
auxiliary registers (ARn), the bottom of the circular buffer, the top of the cir-
cular buffer, and the index into the circular buffer.
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FIRST 1 AT LOCATION N

31 _N+1N 0 31 _N+1 N 0
ARn[H__ H] L...L | Bk 0...0 | NI
31I N+1N 0 31* N+1 N ¢ 0
1(N LSBs
EB{ H...H| o0...0 | Ho..n| TNLSB
BOTTOM OF BUFFER +1
31 _N+1N 0

INDEX| 0...0 | L...L |

CIRCULAR
ADDRESSING
ALGORITHM
LOGIC

y

x| 0...0 | L'.I..L' |

N+1TN ¢ 0

NEW [
e EHE IS

LEGEND:
ARn = auxiliary register n L = low-order bits
BK = blocksize register L = new low-order bits
EF = effective base LSB = least-significant bit
H = high-order bits N = bit value

Figure 6-7. Flowchart for Circular Addressing

In circular addressing, ‘index’ refers to the N LSBs of the auxiliary register se-
lected, and ‘step’ is the quantity being added to or subtracted from the auxil-
iary register. The following two rules must be followed when using circular
addressing:

° The step used must be less than or equal to the blocksize.

e The first time the circular queue is addressed, the auxiliary register must
be pointing to an element in the circular queue.

" 6-23
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The algorithm for circular addressing is as follows:

If 0 < index + step < BK:

index = index + step.
Else if index + step > BK:

index = index + step - BK.
Else if index + step < O:

index = index + step + BK.

Figure 6-8 shows how the circular buffer is implemented. It iliustrates the re-
lationship of the quantities generated and the elements in the circular buffer.

Address Data
31 N+1 N 0 Top of Circular Buffer
Effective Base (EB) | H..H 0.0 |- Element 0
Element 1
6 31 N+1 N 0
Aux. Register (ARn) |  H..H L..L ~ | Element (N LSBs of ARn)
31 N+1 N 0 Last Element
| H.H | LSBsofBK |- Last Element + 1

Figure 6-8. Circular Buffer Implementation

Figure 6-9 provides an example that shows the operation of circular address-
ing. Assuming that all ARs are four bits, let ARO = 0000,and BK = 0110
(blocksize of 6). This example shows a sequence of modifications and the
resulting value of ARQ. It also shows how the pointer steps through the cir-
cular queue, with a variety of step sizes (both incrementing and decrement-
ing).
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*ARO ; ARO = 0 (0th value)
*ARO++(5)% ; ARO = 5 (1lst value)
*ARO++(2)% ; ARO = 1 (2nd value)
*ARO--(3)% ; ARO = 4 (3rd value)
*ARO++(6)% ; ARO = 4 (4th value)
*ARO--% ; ARO = 3 (5th value)
Value Data Address
Oth = Element O 0
2nd = Element 1 1
Element 2 2
5th - Element 3 3
4th, 3rd = Element 4 4
1st = Element 5 (Last Element) 5
Last Element + 1 6

Figure 6-9. Circular Addressing Example

Circular addressing is especially useful for the implementation of FIR filters.
Figure 6-10 shows one possible data structure for FiR filters. Note that the
initial value of ARO points to h(N-1), and the initial value of AR1 points to
x(0). Circular addressing is used in the TMS320C30 code for the FIR filter
shown in Figure 6-11.

AROQ ~

Impulse Response

Input Samples

h(N-1)

x(N-1)

h(N-2)

x(N-2)

h(2)

x(2)

h(1)

x(1)

h(0)

x(0)

Figure 6-10. Data Structure for FIR Filters

“ AR1
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* Initialization
*

TOP

~e we N we

~e we we we e

’

Load block size.

Load pointer to impulse response.
Load pointer to bottom of input
sample buffer.

Read input sample.

Store with other samples.
and point to top of buffer.
Initialize RO.

Initialize R2.

Repeat next instruction.

*ARO++% , *AR1++% ,R0

LDI N,BK

LDI H,ARO

LDI X,AR1

LDF IN, R3

STF R3,*AR1++%

LDF 0,RO

LDF 0,R2

Filter

RPTS N-1

MPYF3

ADDF3 RO,R2,R2

ADDF RO,R2

STF R2,Y

B TOP
Figure 6-11.

i
;

i
i

Multiply and accumulate.
Last product accumulated.

Save result.
Repeat.

FIR Filter Code Using Circular Addressing
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6.4 Bit-Reversed Addressing

Bit-reversed addressing on the TMS320C30 is useful in FFT algorithms using
a variety of radices. One auxiliary register is used as a pointer to the physical
location of a data value. IRO is used to specify the size of the FFT; e.g., the
value contained in IRO must be equal to 2" where n is an integer. By adding
IR0 to the auxiliary register using bit-reversed addressing, addresses are gen-
erated in a bit-reversed fashion.

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let
AR2 contain the value 0110 0000 (96). This is the base address of the data
in memory. Let IRO contain the value 0000 1000 (8). Figure 6-12 shows a
sequence of modifications of AR2 and the resulting values of AR2.

*AR2 ; AR2 = 0110 0000 (Oth value)
*AR2++(IR0O)B ; AR2 = 0110 1000 (1lst wvalue)
*AR2++(IR0O)B ; AR2 = 0110 0100 (2nd value)
*AR2++(IR0O)B ; AR2 = 0110 1100 (3rxd value)
*AR2++(IRO)B ; AR2 = 0110 0010 (4th value)
*AR2++(IR0O)B ; AR2 = 0110 1010 (5th value)
*AR2++ (IR0O)B ; AR2 = 0110 0110 (6éth value)
*AR2++ (IR0O)B ; AR2 = 0110 1110 (7th value)

Figure 6-12. Bit-Reversed Addressing Example

Table 6-3 shows the relationship of the index steps and the four LSBs of AR2.
It can be seen that the four LSBs can be found by reversing the bit pattern of
the steps.

Table 6-3. Index Steps and Bit-Reversed Addressing

STEP | BIT PATTERN BIT-REVERSED PATTERN BIT-REVERSED STEP
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
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6.5 System and User Stack Management

The TMS320C30 provides a dedicated system stack pointer (SP) for building
stacks in memory. The auxiliary registers can also be used to build a variety
of more general linear lists. This section discusses the implementation of the
following types of linear lists:

Stack A linear list for which all insertions and deletions are made at one
end of the list.

Queue A linear list for which all insertions are made at one end of the list,
and all deletions are made at the other end.

Deque A ’double-ended queue’ linear list for which insertions and deletions
are made at the either end of the list.

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 6-13). The SP always points to the last
element pushed onto the stack. A push performs a preincrement; and a pop,
a postdecrement of the system stack pointer.

The program counter is pushed on the system stack on subroutine calis, traps,
and interrupts. It is popped from the system stack on returns. The system stack
can be pushed and popped using the PUSH, POP, PUSHF, and POPF in-
structions.

LOW MEMORY

BOTTOM OF STACK

SP — TOP OF STACK
(FREE)

HIGH MEMORY

Figure 6-13. System Stack Configuration

6.5.1 Stacks
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Stacks can be built from low to high memory or high to low memory. Two
cases for each type of stack are shown. Stacks can be built using the
preincrement/decrement and postincrement/decrement modes of modifying
the auxiliary registers (AR). Stack growth from high-to-low memory can be
implemented in two ways:

CASE 1: Stores to memory using *--ARn to push data on the stack and reads
from memory using *ARn++ to pop data off the stack.

CASE 2: Stores to memory using *ARn-- to push data on the stack and reads
from memory using * ++ARn to pop data off the stack.
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Figure 6-14 illustrates these two cases. The only difference is that in using
case 1, the AR always points to the top of the stack, and in case 2, the AR

always points to the next free location on the stack.

ARn =

CASE 1
LOW MEMORY

(FREE)

TOP OF STACK

BOTTOM OF STACK

HIGH MEMORY

ARn —

CASE 2
LOW MEMORY

(FREE)

TOP OF STACK

BOTTOM OF STACK

HIGH MEMORY

Figure 6-14. Implementions of High-to-Low Memory Stacks

Stack growth from low-to-high memory can be implemented in two ways: u

CASE 3: Stores to memory using *++ARn to push data on the stack and
reads from memory using *ARn-- to pop data off the stack.

CASE 4. Stores to memory using *"ARn++ to push data on the stack and
reads from memory using *--ARn to pop data off the stack.

Figure 6-15 shows these two cases. In the case 3, the AR always points to
the top of the stack. In case 4, the AR always points to the next free location
on the stack.

ARn—

CASE 3
LOW MEMORY

BOTTOM OF STACK

TOP OF STACK

(FREE)

HIGH MEMORY

ARn =

CASE 4
LOW MEMORY

BOTTOM OF STACK

TOP OF STACK

(FREE)

HIGH MEMORY

Figure 6-15. Implementions of Low-to-High Memory Stacks
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6.5.2 Queues and Deques
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The implementations of queues and deques is based upon the manipulation
of the auxiliary registers for user stacks. For queues, two auxiliary registers
are used, one to mark the front of the queue from which data is popped and
the other to mark the rear of the queue where data is pushed.

For deques, two auxiliary registers are also necessary. One is used to mark
one end of the deque, and the other is used to mark the other end. Data can
be popped or pushed from either end.
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Section 7

Program Flow Control

The TMS320C30 provides a complete set of flexible and powerful constructs
that allow for software control of the program flow. These consist of two main
types: repeat modes and branching (standard and delayed). When program-
ming includes a combination of repeat modes, standard branches, and delayed
branches, the type best suited for a particular application can be selected.

Several interlocked operations instructions provide a flexible means of multi-
processor support. Through the use of external signals, these instructions al-
low for powerful synchronization mechanisms. They also guarantee the
integrity of the communication and result in a high-speed operation.

The TMS320C30 supports a nonmaskable external reset signal and a number
of internal and external interrupts. These functions can be programmed for a
particular application.

Major topics discussed in this section include:

® Repeat Modes (Section 7.1 on page 7-2)

- Initialization

- Operation

Delayed Branches (Section 7.2 on page 7-7)
Interlocked Operations (Section 7.3 on page 7-8)

Reset Operation (Section 7.4 on page 7-12)

Interrupts (Section 7.5 on page 7-15)
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7.1 Repeat Modes

The repeat modes of the TMS320C30 allow for the implementation of zero-
overhead looping. For many algorithms, there is an inner kernel of code where
most of the execution time is spent. Using the repeat modes allows these
time-critical sections of code to be executed in the shortest possible time.

The TMS320C30 provides two instructions to support zero-overhead looping:
RPTB (repeat a block of code) and RPTS (repeat a single instruction). RPTB
allows for a block of code to be repeated a specified number of times. RPTS
allows a single instruction to be repeated a number of times and reduces the
bus traffic by fetching the instruction only once.

Three registers (RS, RE, and RC) are associated with the updating of the
program counter when updated in a repeat mode. Table 7-1 describes these
registers.

Table 7-1. Repeat Mode Registers

REGISTER FUNCTION

RS Repeat Start Address Register. Holds the address of the first instruction
of the block of code to be repeated.

RE Repeat End Address Register. Holds the address of the last instruction
of the block of code to be repeated.

RC Repeat Count Register. Contains one less than the number of times the
block remains to be repeated.

7.1.1 Repeat Mode Initialization

7-2

There are two bits that are very important to the operation of RPTB and RPTS,
the RM and S bits.

The RM (repeat mode flag) bit in the status register specifies if the processor
is running in the repeat mode. If RM = O, fetches are not made in repeat
mode, if RM = 1, fetches are made in repeat mode.

The S bit is hidden from the user, but is necessary to fully describe the oper-
ation of RPTB and RPTS. If S = 0, the CPU is not performing fetches in the
repeat-single mode. If S = 1 and RM = 1, the CPU is performing fetches in
the repeat-single mode.

The correct operation of the repeat modes requires that all of the above regis-
ters and status register fields be initialized correctly. The RPTB and RPTS in-
structions perform this initialization in slightly different ways (see Sections
7.1.2 and 7.1.3).
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7.1.2 RPTB Initialization
When RPTB src is executed, the following operations take place:

1) PC+1-RS

2) src - RE
3) 1 — RM status register bit
4) 0 - Sbit.

Step 1 loads the start address of the block into RS. Step 2 loads the src into
the RE (end address of the block). The src operand is a 24-bit value con-
tained in the instruction word. Step 3 sets the status register to indicate the
repeat mode of operation. Step 4 indicates that this is the repeat block mode
of operation.

The last bit of information required is the number of times to repeat the block.
The value is determined by properly initializing the RC (repeat count) register.
Since the execution of RPTB does not load the RC, this register must be
loaded explicitly by the user. The typical setup of the block repeat operation
is shown below.

LDI 15,RC ; 15 = RC
RPTB Loop ; LOOP - RE, PC+ 1 - RS, 1 = RM, O = S

The repeat modes repeat a block of code at least once in a typical operation.
The repeat counter should be loaded with one less than the number of times
to repeat the block; i.e., a value of 0 in RC repeats the block of code one time.
All block repeats initiated by RPTB can be interrupted.

7.1.3 RPTS Initialization
When RPTS src is executed, the following sequence of operations occurs:

1) PC+1-RS

2y PC+1-RE

3) 1 — RM status register bit
4) 1 - Sbit

5) src + RC

The RPTS instuction loads all registers and mode bits necessary for the oper-
ation of the single instruction repeat mode. Step 1 loads the start address of
the block into RS. Step 2 loads the end address into the RE (end address of
the block). Since this is a repeat of a single instruction, the start address and
the end address are the same. Step 3 sets the status register to indicate the
repeat mode of operation. Step 4 indicates that this is the repeat single-in-
struction mode of operation. The operand src is loaded into RC.

Repeats of a single instruction initiated by RPTS are not interruptible, since
the RPTS fetches the instruction word only once and then keeps it in the in-
struction register for reuse. An interrupt would cause the instruction word to
be lost. The refetching of the instruction word from the instruction register
reduces memory accesses and, in effect, acts as a one-word program cache.
If it is necessary to have a single instruction that is repeatable and interruptible,
the RPTB instruction may be used on this single instruction.
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7.1.4 Repeat Mode Operation

The information in the repeat mode registers and associated control bits is
used to control the modification of the PC when the fetches are being made
in repeat mode. The repeat modes compare the contents of the RE register
with the program counter (PC). If they match and the repeat counter is non-
negative, the repeat counter is decremented, the PC is loaded with the repeat
start address, and the processing continues. The fetches and appropriate sta-
tus bits are modified as necessary. Note that the repeat counter (RC) is never
modified when RM is 0. The maximum number of repeats occurs when RC =
080000000h. This will result in 080000001 h repetitions. The detailed algo-
rithm for the update of the PC is described in Figure 7-1.

if RM == ; if in repeat mode (RPTB or RPTS)
ifS == ; If RPTS
if first time through ; If this is the first fetch
fetch instruction from memory ; Fetch instruction from memory
else ; If not the first fetch
fetch instruction from IR ; Fetch instruction from IR
RC-1—+RC ; Decrement RC
ifRC<0 ; If RC is negative
; Repeat single mode completed
0 = ST(RM) ; Turn off repeat mode bit
Illil 0—+S ; Clear S
PC+1 - PC ; Increment PC
else if S == ; If RPTB )
fetch instruction from memory ; Fetch instruction from memory
if PC == RE ; If this is the end of the block
RC-1—RC ; Decrement RC
if RC>0 ; If RC is not negative
RS = PC ; Set PC to start of block
else if RC < 0 ; If RC is negative
0 = ST(RM) ; Turn off repeat mode bits
0—=S ; Clear S
PC+1—=PC ; Increment PC

Figure 7-1. Repeat Mode Control Algorithm

The RPTB and RPTS are four-cycle instructions. These four cycles of over-
head are only incurred on the first pass through the loop. All subsequent
passes through the loop are accomplished with zero cycles of overhead. In
Example 7-1, the block of code from STLOOP to ENDLOP is repeated sixteen
times. :

Example 7-1. RPTB Operation

LD 15,RC ; Load repeat counter with 15
RPTB ENDLOP ; Execute the block of code

STLOOP ; from STLOOP to ENDLOP 16 times

ENDLOP
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Using this mode of modifying the PC allows for a straightforward analysis of
what would happen in the case of branches within the block. It is best to look
at the operation from the point of view that the next value of the PC will be
either PC + 1 or the contents of the RS register. It is thus apparent that this
method of block repeat allows for any amount of branching within the re-
peated block. Execution can go anywhere within the user’s code via interrupts,
subroutine calls, etc. For proper modification of the loop counter, the last in-
struction of the loop must be fetched. The repeating of the loop can be
stopped prior to completion by writing a 0 into the repeat counter or writing
0 into the RM bit of the status register.

Since the block repeat modes modify the program counter, other instructions
cannot modify the program counter at the same time. Two rules apply here:

1)  The last instruction in the block (or the only instruction in a block of size
one) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAPcond,
RETlcond, RETScond, IDLE, RPTB, or RPTS. Example 7-2 shows an
incorrectly placed standard branch.

2)  None of the last four instructions from the bottom of the block (or the
only instruction in a block of size one) can be a BcondD, BRD, or
DBcondD. Example 7-3 shows an incorrectly placed delayed branch.

If either of these rules are violated, the PC will be undefined.

Example 7-2. Incorrectly Placed Standard Branch

LD 15,RC ; Load repeat counter with 15
RPTB ENDLOP ; Execute block of code

STLOOP ; from STLOOP to ENDLOP 16 times
JCS

ENDLOP BR O0PS ; This branch violates rule 1

Example 7-3. Incorrectly Placed Delayed Branch

LD 15,RC ; Load repeat counter with 15
RPTB ENDLOP ; Execute block of code

STLOOP ; from STLOOP to ENDLOP 16 times
GAF
BRD 0O0PS ; This branch violates rule 2
ADDF
MPYF

ENDLOP SUBF

Block repeats (RPTB) are nestable. Since all of the control is defined by the
RS, RE, RC, and ST registers, saving and restoring these registers allows for
their nesting. The RM bit in the status register can be used to determine if the
block repeat mode is active. For example, if an interrupt service routine is
written which requires the use of RPTB, it is possible that the interrupt asso-
ciated with the routine may occur during another block repeat. The interrupt
service routine can check the RM bit. If this bit is set, the interrupt routine
saves RS, RE, RC, and ST. The interrupt routine can then perform a block re-
peat. Before returning to the interrupted routine, the interrupt routine restores
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RS, RE, RC, and ST. If the RM bit is not set, the save and restore of these re-
gisters is not necessary.
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7.2 Delayed Branches

The branching capabilities of the TMS320C30 include two main types: stan-
dard and delayed branches. Standard branches empty the pipeline before
performing the branch to guarantee correct management of the program
counter. This results in a TMS320C30 branch taking four cycles. Included in
this class are calls, returns, and traps.

Delayed branches on the TMS320C30 do not empty the pipeline, but rather
guarantee that the next three instructions will be executed before the program
counter is modified by the branch. The result is a branch that only requires a
single cycle, thus making the speed of the delayed branch very close to the
optimal block repeat modes of the TMS320C30. However, unlike block repeat
modes, delayed branches may be used in situations other than looping. Every
delayed branch has a standard branch counterpart that is used when a delayed
branch cannot be used. The delayed branches of the TMS320C30 are
BcondD, BRD, and DBcondD.

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. They do not depend
upon the instructions following the delayed branch. Delayed branches are
guaranteed to allow the three following instructions to be executed regardless
of other pipeline conflicts.

When a delayed branch is fetched, it remains pending until the three following [#
instructions are executed. None of the three instructions that follow a delayed
branch can be Bcond, BcondD, BR, BRD, DBcond, DBcondD, CALL,
CALLcond, TRAPcond, RETlcond, RETScond, RPTB, RPTS, or IDLE. (see
Example 7-4).

Delayed branches disable interrupts until the three instructions following the
delayed branch are completed. This is independent of whether or not the
branch is taken.

If delayed branches are used incorrectly, the PC will be undefined.

Example 7-4. Incorrectly Placed Delayed Branches

Bl: BD L1l
NOP
NOP
B2: B L2 ; This branch is incorrectly placed
NOP
MJH
NOP
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7.3 Interlocked Operations
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One of the most common multiprocessing configurations is the sharing of
global memory by multiple processors. In order to allow multiple processors
to access this globa! memory and share data in a coherent manner, some sort
of arbitration or handshaking is necessary. This requirement for arbitration is
the purpose of the TMS320C30 interlocked operations.

The TMS320C30 provides a flexible means of multiprocessor support with five
instructions, referred to as interlocked operations. Through the use of external
signals, these instructions allow for powerful synchronization mechanisms.
They also guarantee the integrity of the communication and result in a high-
speed operation. The interlocked-operation instruction group is listed in Table

Table 7-2. Interlocked Operations

MNEMONIC DESCRIPTION OPERATION
LDFI Load floating-point value into a register, Signal interlocked
interlocked src = dst
LbNn Load integer into a register, interlocked Signal interlocked
src — dst
SIGI Signal, interlocked Signal interlocked
Clear interlock
STFI Store floating-point value to memory, src => dst
interlocked Clear interlock
STH Store integer to memory, interlocked src = dst
Clear interlock

The interlocked operations use the two external flag pins, XFO and XF1. XFO
must be configured as an output pin, and XF1 as an input pin. When config-
ured in this manner, XFO signals an interlock operation request, and XF1 acts
as an acknowledge signal for the requested interlocked operation. In this
mode, XFO and XF1 are treated as active-low signals.

The external timing for the interlocked loads and stores are the same as stan-
dard load ard stores. The interlocked loads and stores may be extended like
standard accesses, by using the appropriate ready signal (RDY or XRDY).

The LDFI and LDII instructions perform the following actions:

1)  Simultaneously set XFO to O and begin a read cycle. The timing of XFO
is similar to that of the address bus during a read cycle.

2) Execute an LDF or LDI instruction and extend the read cycle until XF1
is set to 0 and a ready (RDY or XRDY) is signalled.

3) Leave XFO set to O and end the read cycle.

The read/write operation is identical to any other read/write cycle except for
the special use of XFO and XF1. The src operand for LDFI and LDII is always
a direct or indirect memory address. XFO is set to O only if the src is located
off-chip; i.e., (STRB, MSTRB or IOSTRB is active), or the src is one of the on-
chip peripherals. If on-chip memory is accessed, then XFO is not asserted, and
the operation is as an LDF or LDI from internal memory.
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The STFI and STIl instructions perform the following operations:

1)  Simultaneously set XFO to 1 and begin a write cycle. The timing of XFO
is similar to that of the address bus during a write cycle.

2) Execute an STF or STI instruction and extend the write cycle until a
ready (RDY or XRDY) is signalled.

As in the case for LDFI and LDII, the dst of STFI and STII affects XFO if dst
is located off-chip (STRB, MSTRB, or I0STRB is active), or the src is one of the
on-chip peripherals. If on-chip memory is accessed, then XFO is not asserted
and the operations are as an STF or ST to internal memory.

The SIGI instruction functions as follows:

1) Sets XFO to O.
2) Idles until XF1 is set to 0.
3) Sets XFO to 1 and ends the operation.

While the LDFI, LDH, and SIGI instructions are waiting for XF1 to be set to
0, they may be interrupted. LDFI and LDII require a ready signal in order to
be interrupted. This allows the user to implement protection mechanisms
against deadlock conditions by interrupting an interlocked load that has taken
too long. Upon return from the interrupt, the next instruction is executed. The
STFI and STil instructions are not interruptible.

Interlocked operations can be used to implement a busy-waiting loop, to ma-
nipulate a multiprocessor counter, to implement a simple semaphore mech- |
anism, or to perform synchronization between two TMS320C30s. The
following examples illustrate the usefulness of the interlocked operations in-
structions. Example 7-5 shows the implementation of a busy-waiting loop. If
location LOCK is the interlock for a critical section of code, and a nonzero
means the lock is busy, the algorithm for a busy-waiting loop can be used as
shown in Example 7-5.

Example 7-5. Busy-Waiting Loop

; Put 1 in RO
Interlocked operation begun
; Contents of LOCK - R1

LDI: 1,RO 7
STII RO,@LOCK : Put RO (= 1) into LOCK, XFO = 1

Ll: LDII @LOCK,R1

Interlocked operation ended

BNZ Ll ; Keep trying until LOCK = 0

Example 7-6 shows how a location COUNT may contain a count of the
number of times a particular operation needs to be performed. This operation
may be performed by any processor in the system. If the count is zero, the
processor waits until it is nonzero before beginning processing. The algorithm
for modifying COUNT correctly is shown in Example 7-6.
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Example 7-6. Multiprocessor Counter Manipulation

XFO = 1
Interlocked operation ended
Interlocked operation begun

CT: OR 4,I0F ;
i
i
; Contents of COUNT — R1
H
;
I
i

LDII @COUNT,R1
BZ CcT

SUBI 1,R1
STII R1,@COUNT

If COUNT = 0, keep trying
Decrement R1(= COUNT)
Update COUNT, XFO = 1
Interlocked operation ended

Figure 7-2 illustrates muitiple TMS320C30s sharing global memory and using
the interlocked instructions as in Examples 7-7, 7-8, 7-9, and 7-10.

DATA

'

-— Arbitration
Logic

.
ADDR

Lock, Count, or S ]

|

XFO XF1 |(x)a l l Al XFO XF1
(XD (X)D
TMS320C30
TMS320C30 CTRL’ WCTRL
#1 #2
Local Loca
Memory Memory

Figure 7-2. Multiple TMS320C30s Sharing Global Memory

Sometimes it may be necessary for several processors to access some shared
data or other common resources. The portion of code which must access the
shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used. Se-
maphores are variables which can only take non-negative integer values. Two
primitive, indivisible, operations are defined on semaphores, namely (with S
being a semaphore):
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V(S): S+ 1-—>38
P(S): ©P: if (S == 0), go to P
else S -1 =+ S

Indivisibility of V(S) and P(S) means that when these processes access and
modify the semaphore S, they are the only processes accessing and modifying
S.

To enter a critical section, a P operation is performed on a common sema-
phore, say S (S is initialized to 1). The first processor performing P(S) will
be able to enter its critical section. All other processors are blocked since S
has become 0. After leaving its critical section, the processor performs a V(S),
thus allowing another processor to execute P(S) successfully.

The TMS320C30 code for V(S) is shown in Example 7-7, and code for P(S)
is shown in Example 7-8. Compare the code in Example 7-8 to the code in
Example 7-6.

Example 7-7. Implementation of V(S)
V: LDII @S,RO ; Interlocked read of S begins (XFO = 0)
; Contents of S = RO
ADDI 1,RO ; Increment RO (= S)
STII RO,Q@S ; Update S, end interlock (XFO = 0)

Example 7-8. Implementation of P(S)

P: OR 4,I0F
LDII @S,RO

; End interlock (XFO = 1)
; Interlocked read of S begins
; Contents of S = RO
BZ P ;
SUBI 1,RO ;
STII RO,@S ;

If S = 0, go to P and try again
Decrement RO (= S)
Update S, end interlock (XFO = 1)

The SIGI operation may be used to synchronize, at an instruction level, multi-
ple TMS320C30s. Consider two processors connected as shown in Figure
7-3 The code for the two processors is shown in Example 7-9

TMS320C30 #1 TMS320C30 #2
XFO XF1
XF1 XFO

Figure 7-3. Zerc-Logic Interconnect of TMS320C30s
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Processor #1 runs until it executes the SIGI. It then waits until processor #2

executes a SIGI.

continue execution.

Example 7-9. Code to Synchronize Two TMS320C30s at the Software Level

Time

Code for TMS320C30 #1

(WAIT)

|

At this point, the two processors have synchronized and

Code for TMS320C30 #2
L/

@ ««— Synchronization Occurs ——  g|Gj|
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7.4 Reset Operation

The TMS320C30 supports a nonmaskable external reset signal (RESET), which
is used to perform system reset. This section discusses the reset operation.

At powerup, the state of the TMS320C30 processor is undefined. The RESET
signal is used to place the processor in a known state. This signal must be
asserted low for 10 or more H1 clock cycles to guarantee a system reset. H1
is an output clock signal generated by the TMS320C30 (see Appendix A for
more information).

Reset affects the other pins on the device in either a synchronous or asyn-
chronous manner. The synchronous reset is gated by the TMS320C30s in-
ternal clocks. The asynchronous reset directly affects the pins, and is faster
than the synchronous reset. Table 7-3 shows the state of the TMS320C30s
pins after RESET = 0. Each pin is described according to whether the pin is
reset synchronously or asynchronously.

Table 7-3. Pin Operation at Reset

SIGNAL | # PINS I OPERATION AT RESET
PRIMARY {INTERFACE (61 PINS)
D(31-0) 32 Synchronous reset. Placed in high-impedance state.
A(23-0) 24 Synchronous reset. Placed in high-impedance state.
R/W 1 Synchronous reset. Deasserted by going to a high level.
STRB 1 Synchronous reset. Deasserted by going to a high level.
RDY 1 Reset has no effect.
HOLD 1 Reset has no effect.
HOLDA 1 Reset has no effect.
EXPANSION INTERFACE (49 PINS)
XD(31-0) 32 Synchronous reset. Placed in high-impedance state.
XA(12-0) 13 Synchronous reset. Placed in high-impedance state.
XR/W 1 Synchronous reset. Deasserted by going to a high level.
MSTRB 1 Synchronous reset. Deasserted by going to a high level.
I0OSTRB 1 Synchronous reset. Deasserted by going to a high level.
XRDY 1 Reset has no effect.
CONTROL SIGNALS (9 PINS)
RESET 1 Reset input pin
TNT(3-0) 4 Reset has no effect.
TACK 1 Synchronous reset. Deasserted by going to a high level.
MC/MP 1 Reset has no effect.
XF(1-0) 2 Asynchronous reset. Placed in high-impedance state.
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Table 7-3. Pin Operation at Reset (Continued)

SIGNAL | # PINS | OPERATION AT RESET
SERIAL PORT 0 SIGNALS (6 PINS)
CLKX0 1 Asynchronous reset. Placed in high-impedance state.
DX0 1 Asynchronous reset. Placed in high-impedance state.
FSX0 1 Asynchronous reset. Placed in high-impedance state.
CLKRO 1 Asynchronous reset. Placed in high-impedance state.
DRO 1 Asynchronous reset. Placed in high-impedance state.
FSRO 1 Asynchronous reset. Placed in high-impedance state.
SERIAL PORT 1 SIGNALS (6 PINS)
CLKX1 1 Asynchronous reset. Placed in high-impedance state.
DX1 1 Asynchronous reset. Placed in high-impedance state.
FSX1 1 Asynchronous reset. Placed in high-impedance state.
CLKR1 1 Asynchronous reset. Placed in high-impedance state.
DR1 1 Asynchronous reset. Placed in high-impedance state.
FSR1 1 Asynchronous reset. Placed in high-impedance state.
TIMER 0 SIGNAL (1 PIN)
TCLKO [ 1 [ Asynchronous reset. Placed in high-impedance state.
TIMER 1 SIGNAL (1 PIN)
TCLK1 | 1 I Asynchronous reset. Placed in high-impedance state.
SUPPLY and OSCILLATOR SIGNALS (29 PINS)
Vpp(3-0) 4 Reset has no effect.
10DVpp(1,0 2 Reset has no effect.
ADVpp(1.0) 2 Reset has no effect.
PDVpp 1 Reset has no effect.
DDVpp(1,0) 2 Reset has no effect.
MDVpp 1 Reset has no effect.
Vgs(3-0) 4 Reset has no effect.
DVgs(3-0) 4 Reset has no effect.
CVgs(1,0) 2 Reset has no effect.
Vgg 1 Reset has no effect.
Vggp 1 Reset has no effect.
SUBS 1 Reset has no effect.
X1 1 Reset has no effect.
X2/CLKIN 1 Reset has no effect.
H1 1 Synchronous reset. Will go to its initial state when RESET
makes a 1 to O transition. See Appendix A.
H3 1 Synchronous reset. Will go to its initial state when RESET
makes a 1 to O transition. See Appendix A.
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Table 7-3. Pin Operation at Reset (Concluded)

SIGNAL I # PINS | OPERATION AT RESET
EMULATION, TEST, and RESERVED (18 PINS)
EMUO F14 Undefined.
EMU1 E15 Undefined.
EMU2 F13 Undefined.
EMU3 E14 Undefined.
EMUA4 F12 Undefined.
EMUS C1 Undefined.
EMU6 M6 Undefined.
RSVO J3 Undefined.
RSV1 Ja Undefined.
RSV2 K1 Undefined.
RSV3 K2 Undefined.
RSV4 L1 Undefined.
RSV5 K3 Undefined.
RSV6 L2 Undefined.
RSV7 K4 Undefined.
RSV8 M1 Undefined.
RSV9 L3 Undefined.
RSV10 M2 Undefined.

At system reset, the following additional operations are performed:

o The peripherals are reset. This is a synchronous operation. The periph-
eral reset is described in Section 9.

° The following CPU registers are loaded with zero:

- ST (CPU status register)

- IE (CPU/DMA interrupt enable flags)
- IF (CPU interrupt flags)

- 10F (1/0 flags)

-] The reset vector is read from memory location Oh and loaded into the
PC. This vector contains the start address of the system reset routine

-] Execution begins. Refer to Section 12 an example of a processor in-
itialization routine.

Multiple TMS320C30s driven by the same system clock may be reset and
synchronized. When the 1 to O transition of RESET occurs, the processor is
placed on a well-defined internal phase, and all of the TMS320C30s will come
up on the same internal phase.
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7.5 Interrupts

The TMS320C30 supports multiple internal and external interrupts, which can
be used for a variety of applications. This section discusses the operation of
these interrupts.

A functional diagram of the logic used to implement the external interrupt in-
puts is shown in Figure 7-4; the logic for internal interrupts is similar. Addi-
tional information regarding internal interrupts can be found in Section 9.

Internal
Interrupt EINT(CPU)

Set GIE(CPU)
Signal Interrupt
Flag (n)

INTn—

CLK

ol

To
) Control
Set @ Internal

Section
CLK CLK I—- RESET
l_ r Internal
Interrupt GIE(DMA)

Interrupt |
Processor
H3 H1 Clear/Acknowledge
Signal

EINTn(DMA)

Figure 7-4. Interrupt Logic Functional Diagram

External interrupts are synchronized internally as illustrated by the three flip-
flops clocked by H1 and H3. Once synchronized, the interrupt input will set
the corresponding Interrupt Flag register (IF) bit if the interrupt is active.

External interrupts can be effectively either edge- or level-triggered, depending
on the duration of the low level on the interrupt input. An external interrupt
must be held low for at least one H1/H3 cycle to be recognized by the
TMS320C30. If the interrupt is held low for between one and three cycles,
then only one interrupt is recognized. If the interrupt is held low three or more
cycles, more than one interrupt may be recognized depending on how rapidly
interrupts are serviced.

When a particular interrupt is processed by the CPU or DMA controller, the
corresponding interrupt flag bit is cleared by the internal interrupt acknowl-
edge signal. It should be noted, however, that if TNTn is still low when the
interrupt acknowledge signal occurs, the interrupt flag bit will only be cleared
for one cycle and then set again since INTn is still low. Accordingly, it is the-
oretically possible that, depending on when the IF register is read, this bit may
be zero even though INTn is zero. When the TMS320C30 is reset, zero is
written to the interrupt flag register, thereby clearing all pending interrupts.
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The interrupt flag register bits may be read and written under software control.
Writing a 1 to a IF register bit sets the associated interrupt fiag to 1. Similiarly,
writing a O resets the corresponding interrupt flag to 0. In this way, all inter-
rupts may be triggered and/or cleared through software. Since the interrupts
flags may be read, the interrupt pins may be polled in software when an in-
terrupt-driven interface is not required.

Internal interrupts operate in a similar manner. The bit in the IF register corre-
sponding to an internal interrupt may be read and written through software.
Writing a 1 sets the interrupt latch, and writing a O clears it. All internal in-
terrupts are one H1/H3 cycle in length.

The CPU global interrupt enable bit (GIE), located in the CPU status register
(ST), controls all CPU interrupts. All DMA interrupts are controlled by the
DMA global interrupt enabie bit, which is not dependent upon ST(GIE) and
is local to the DMA. The DMA global interrupt enable bit is dependent, in
part, upon the state of the DMA SYNCH bits. It is not directly accessible
through software (see Section 9). The AND of the interrupt flag bit and the
interrupt enables is then connected to the interrupt processor.

To provide for maximum performance in servicing interrupts, the interrupt ac-
knowledge (IACK) instruction is provided. IACK drives the TACK pin and
performs a dummy read. The read is peformed from the address specified by
the IACK instruction operand. When IACK is used, it typically is placed in the
early portion of an interrupt service routine. For certain applications, it may
be better suited at the end of the interrupt service routine or be totally unnec-
essary.

The CPU controls all prioritization of interrupts (see Table 7-4 for reset and
interrupt vector locations and priorities). If the DMA is not using interrupts
for synchronization of transfers, it will not be affected by the processing of the
CPU interrupts. If the CPU is involved in a pipeline conflict (branch, register,
or memory), it will not respond to the interrupts until that conflict is resolved.
It is therefore possible to interrupt the CPU and DMA simultaneously with the
same or different interrupts and, in effect, synchronize their activities. For ex-
ample, it may be necessary to cause a high-priority DMA transfer that avoids
bus conflicts with the CPU, i.e., make the DMA higher priority than the CPU.
This may be accomplished using an interrupt that causes the CPU to trap to
an interrupt routine that contains an IDLE instruction. Then if the same in-
terrupt is used to synchronize DMA transfers, the DMA transfer counter can
be used to generate an interrupt, and thus return control to the CPU following
the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can be responding to interrupts and
thus clearing the associated interrupt flags.
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Table 7-4. Reset and Interrupt Vector Locations

RESET OR { VECTOR | PRIORITY FUNCTION
INTERRUPT| LOCATION
RESET Oh 0 External reset signal input on the RESET
pin.
INTO 1h 1 External interrupt input on the INTO pin.
INT1 2h 2 External interrupt input on the INT1 pin.
INT2 3h 3 External interrupt input on the INT2 pin.
INT3 4h 4 External interrupt input on the INT3 pin.
XINTO 5h 5 Internal interrupt generated when serial
port O transmit buffer is empty.
RINTO 6h 6 Internal interrupt generated when serial
port O receive buffer is full.
XINT1 7h 7 Internal interrupt generated when serial
port 1 transmit buffer is empty.
RINT1 8h 8 Internal interrupt generated when serial
port 1 receive buffer is full.
TINTO 9h 9 Internal interrupt generated by timer 0.
TINT1 OAh 10 Internal interrupt generated by timer 1.
DINT OBh 11 Internal interrupt generated by DMA con-
troller 0.

If there is a delayed branch in the pipeline, interrupts are held pending until
after the branch. If the interrupt occurs in the first cycle of the fetch of an in-
struction, the fetched instruction is discarded (not executed), and the address
of that instruction is pushed to the top of the system stack. If the interrupt
occurs after the first cycle of the fetch, in the case of a multicycle fetch due to
wait states, that instruction is executed and the address of the next instruction
to be fetched is pushed to the top of the system stack. If no program fetch is
occurring, then no new fetch is performed. After the address of the appropri-
ate instruction has been pushed, the interrupt vector is fetched, loaded into the
PC, and execution continues.

The TMS320C30 allows the CPU and DMA to respond to and process inter-
rupts in parallel. Figure 7-5 shows interrupt processing flow. The interrupts
are polled and the CPU and DMA begin processing them. In the interrupt flow
pertaining to the the CPU, the interrupt flag corresponding to the highest-
priority enabled interrupt is cleared, and GIE is set to 0. The CPU completes
all fetched instructions. The interrupt vector is fetched and loaded into the PC,
and the CPU continues execution. The DMA cycle is similar to that for the
CPU. After the pertinent interrupt flag is cleared, the DMA proceeds based
upon the status of the SYNCH bits in the DMA global control register.
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IF ENABLED
INTERRUPT IS
A CPU INTERRUPT

IF ENABLED
INTERRUPT IS
A DMA INTERRUPT

!

Y

CLEAR INTERRUPT FLAG
CPU GIE «—0

CLEAR INTERRUPT FLAG

Y

Y

COMPLETE ALL
FETCHED INSTRUCTIONS

DMA PROCEEDS BASED
UPON SYNCH BITS

Y

Y

PC—®*(+ +SP)
FETCH INTERRUPT VECTOR

DMA CONTINUES

Y

CPU CONTINUES

Figure 7-5. Interrupt Processing
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Section 8

External Bus Operation

Two external interfaces are provided on the TMS320C30: the primary bus and
the expansion bus. These are used to access memories and external peripheral
devices. Software controlled wait states and an external input signal provide
for wait state generation.

Major topics discussed in this hardware interface section are listed below.

° External Interface Control Registers (Section 8.1 on page 8-2)

- Primary bus
- Expansion bus

-] External Interface Timing (Section 8.2 on page 8-5)
] Programmable Wait States (Section 8.3 on page 8-18)

® Programmable Bank Switching (Section 8.4 on page 8-20)
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8.1 External Interface Control Registers

8-2

The TMS320C30 provides two external interfaces: the primary bus and the
expansion bus. The primary bus consists of a 32-bit data bus, a 24-bit address
bus, and a set of control signals. The expansion bus consists of a 32-bit data
bus, a 13-bit address bus and a set of control signals. Both buses support
software-controlled wait states and an external ready input signal. Both buses
support data, program, and |/O accesses.

When a primary bus access is performed, STRB is low. The expansion bus
supports two types of accesses. One is used primarily for memory accesses
that are signalled by MSTRB low. The timing for a MSTRB access is the same
as that of the STRB access on the parallel interface. The other type of expan-
sion bus access is commonly used for access of external peripheral devices
and is signalled by IOSTRB low.

The primary bus and the expansion bus each have an associated control reg-
ister. These registers are memory-mapped as shown in Figure 8-1.

REGISTER PERIPHERAL
ADDRESS
EXPANSION BUS CONTROL 808060h
RESERVED 808061h
RESERVED 808062h
RESERVED 808063h
PRIMARY BUS CONTROL 808064h
RESERVED 808065h
RESERVED 808066h
RESERVED 808067h
RESERVED 808068h
RESERVED 808069h
RESERVED 80806AhN
RESERVED 80806Bh
RESERVED 80806Ch
RESERVED 80806Dh
RESERVED 80806Eh
RESERVED 80806Fh

Figure 8-1. Memory-Mapped External Interface Control Registers
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8.1.1 Primary Bus Control Register

The primary bus control register is a 32-bit register that contains the control
bits for the primary bus (see Figure 8-2). Table 8-1 lists the register bits with
the bit names and functions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|XXIXXIXXlXXIXXIXXlXX'XXIXXIXXIXXIXXIXXIXXI XX I XX l
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ooc | | oo | BNKCMP | wrent | sww | Hiz [NoHOLDjHOLDST]

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  R/W R

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 8-2. Primary Bus Control Register

Table 8-1. Primary Bus Control Register Bits Summary

BIT NAME FUNCTION

0 HOLDST | Hold status bit. This bit signals if the port is being held
(HOLDST = 1) or is not being held (HOLDST = 0). This sta-
tus bit is valid whether the port has been held via hardware or
software.

1 NOHOLD | Port hold signal. NOHOLD allows or disallows the port to be
held by an external HOLD signal. When NOHOLD = 1, the
TMS320C30 takes over the external bus and controls it re-
gardless of requests by external devices. No hold acknowledge
(HOLDA,) is asserted when a HOLD is received. However, it
is asserted if an internal hold is generated (HIZ = 1). NOHOLD
is set to O at reset.

2 HIZ Internal hold. When set (HIZ = 1), the port is put in hold
mode. This equivalent to the external HOLD signal. By forcing
a three-state condition, the TMS320C30 can relinquish the
external memory port through software. HOLDA goes low
when the port is three-stated. HIZ is set to O at reset.

3-4 SWW Software wait-state generation. In conjunction with WTCNT,
this 2-bit field defines the mode of wait-state generation. It is
setto 1 1 at reset.

5-7 WTCNT | Software wait mode. This 3-bit field specifies the number of
cycles to use when in software wait mode for the generation
of internal wait states. The range is zero (WTCNT =0 0 0) to
seven (WTCNT =1 1 1) H1/H3 cycles. Itissetto1 1 1 at
reset.

8-12 BNKCMP | Bank compare. This 5-bit field specifies the number of MSBs
of the address to be used to define the bank size. It is set to 1
0000 at reset.

13-31 Reserved | Read as 0.

8-3
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8.1.2 Expansion Bus Control Register

The expansion bus control register is a 32-bit register that contains control
bits for the expansion bus (see Figure 8-3 and Table 8-2).

31 30 29 28 27 26 26 24 23 22 2 20 19 18 17 16
o oo T oo T oo T oox T oo T oo T oo Lo T ooe T oo | oox T oox T oo [ oox | o ]

15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
ruixxlxxmlxﬂxumlxxl WTCNT rSWW—IXXIXX|XX—I

R/W R/W R/W R/W R/W

NOTE: xx = reserved bit, read as 0.
R = read, W = write.

Figure 8-3. Expansion Bus Control Register

Table 8-2. Expansion Bus Control Register Bits Summary

BIT NAME FUNCTION
0-2 Reserved | Read as 0.
3-4 SWwW Software wait-state generation. In conjunction with the

WTCNT, this 2-bit field defines the mode of wait-state gener-
ation. Itissetto 1 1 at reset.

5-7 WTCNT | Software wait mode. This 3-bit field specifies the number of
cycles to use when in software wait mode for the generation
of internal wait states. The range is zero (WTCNT =00 0) to
seven (WTCNT =11 1) H1/H3 clock cycles. Itis setto 1 1
1 at reset.

8-31 Reserved | Read as O.
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8.2 External Interface Timing

This section discusses functional timing of operations on the primary bus and
the expansion bus, the TMS320C30’s two independent parallel buses. De-
tailed timing specifications for all TMS320C30 signals are contained in Ap-
pendix A, the TMS320C30 Data Sheet.

The parallel buses implement three mutually exclusive address spaces distin-
quished through the use of three separate control signals: STRB,MSTRB, and
IOSTRB. The STRB signal controls accesses on the primary bus, and the MSTRB
and I0STRB control accesses on the expansion bus. Since the two buses are
independent, two accesses may be made in parallel.

With the exception of bank switching and the external HOLD function (dis-
cussed later in this section), timing of primary bus cycles and MSTRB expan-
sion bus cycles are identical, and will be discussed collectively. The acronym
(M)STRB will be used in references which pertain equally to STRB and
MSTRB. Similarly (X)R/W, (X)A, (X)D, and (X)RDY are used to symbolize the
equivalent primary and expansion bus signals. The IOSTRB expansion bus
cycles are timed differently and will be discussed independently.

8.2.1 Primary Bus Cycles

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is

defined to be from one falling edge of H1 to the next falling edge of H1. For

full speed (zero wait state) accesses, reads take one H1 cycle, while writes u
take two cycles, uniess the write follows a read, in which case the write takes

three cycles. Recall that internally (from the perspective of the CPU and

DMA) writes require only one cycle if no accesses to that interface are in
progress. The following discussions pertain to zero wait state accesses unless
otherwise specified.

The (M)STRB signal is low for the active portion of both reads and writes,
which lasts one H1 cycle. Additionally before and after the active portion
((M)STRB low) of writes only, there is a transition cycle of H1. During this
transition cycle, the following occur:

1)  (M)STRB is high.
2)  If required, (X)R/W changes state on H1 rising.

3) If required, addresses changes on H1 rising if the previous H1 cycle was
the active portion of a write. If the previous H1 cycle was a read, address
changes on H1 falling.

Figure 8-4 illustrates a read-read-write sequence for (M)STRB active and no
wait states. The data is read as late in the cycle as possible to allow for the
maximum access time from address valid. Note that although external writes
take two cycles, internally (from the perspective of the CPU and DMA), they
require only one cycle if no accesses to that interface are in progress. In the
typical timing for all external interfaces, the (X)R/W strobe does not change
until (M)STRB or TOSTRB goes inactive.

8-5
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E< rd . ) { ud . ) \ write data >——

X
W A S S SN S D R S S
(X)RDY : \ / \/ : : \ :

n Figure 8-4. Read-Read-Write for (M)STRB = 0
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Figure 8-5 llustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately one-
half cycle after (M)STRB changes.

H1

mems © N/ N/ 1 N
(XIR/W _-\ A& : *
(XIA : : : X : : . . : )
T N\ /S N\ N\

; : : : : : : : ’ : ’ : u

O A
S

Figure 8-5. Write-Write-Read for (M)STRB = 0
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Figure 8-6 illustrates a read cycle with one wait state. Since (X)RDY =
1, the read cycle is extended. (M)STRB, (X)R/W, and (X)A are also ex-

tended one cycle. The next time (X)RDY is sampled, it is O.

{MISTRB \

.

(X)R/W

: : : anM '
(XID — . o rd ¥
. M . . .

o 7NN N
. . L—extra.cycle"‘i | | | |

write data

..T...

TSy O

Figure 8-6. Use of Wait States for Read for (M)STRB =0
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Figure 8-7 illustrates a write cycle with one wait state. Since initially
(X)RDY = 1, the write cycle is extended. (M)STRB, (X)R/W, and (X)A

are extended one cycle. The next time (X)RDY is sampled, it is O.

H3

H1

. X X
QU S VARSI VA -

|4—-extra cycle——l

Figure 8-7. Use of Wait States for Write for (M)STRB = 0
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8.2.2 Expansion Bus I/O Cycles

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are both
two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of H1, and
JOSTRB is low from the rising edge of the first H1 cycle to the rising edge of
the second H1 cycle. The TOSTRB signal always goes inactive (high) between
cycles, and XR/W is high for reads and low for writes.

Figure 8-8 illustrates read and write cycles when TOSTRB is active and there
are no wait states. For TOSTRB accesses, reads and writes require a minimum
of two cycles. Some off-chip peripherals may change their status bits when
read or written. Therefore, it is important that valid addresses be maintained
when communicating with these peripherals. For reads and writes when

TOSTRB is active, TOSTRB is completely framed by the address.

9 . rd - 4 write data

Figure 8-8. Read and Write for IOSTRB = 0
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Figure 8-9 illustrates a read with one wait state when IOSTRB is active, and
Figure 8-10 illustrates a write with one wait state when IOSTRB is active. For

each wait state added, TOSTRB, XR/W, and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY
is repeated each cycle.

H1 \ / \ /
TOSTRB : \ : : : :

(XIR/W / :

(XD L ,/ ) .

| e oxva cycto]

Figure 8-9. Read with One Wait-State for IOSTRB = 0 !

><
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(X)D - write data

TXTRDY /\\/

Figure 8-10. Write with One Wait-State for IOSTRB

1l
o
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Figure 8-11 through Figure 8-13 illustrate the various transitions between
memory reads and writes, and 1/0O writes over the expansion bis.

MSTRB  \, : /

IOSTRB

W : ; \\ :
XA mem add QLRI V0 add >&

(X)D — - {  Y—m— : < 10 wri )——
E\I‘., . : \ /0 write

TXIRDY \ / \ /

Figure 8-11. Memory Read and 1/O Write for Expansion Bus
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MSTRB

IOSTRB

(X)R/W

{(X)A W 1/0 add m mem add

{X)p 1/0 write

( mem writ?

N

(X)RDY \/ \ /

Figure 8-12. 1/0 Write and Memory Read for Expansion Bus
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I0STRB

(XIRIW ; : : / : : : ; :
XA mem add W 1/0 add )@
-—<7 mem write [‘ @——g——

Figure 8-13. Memory Write and 1/O Read for Expansion Bus

(X)D
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Figure 8-14 and Figure 8-15 illustrate the signal states when a bus is inactive
(after a TOSTRB or (M)STRB access respectively). The strobes (STRB, MSTRB,
TOSTRB) and (X)R/W go to 1. The address is undefined, and the ready signal

(XRDY or RDY) is ignored.

IOSTRB

XR/W

XA X address undefined
/

XD —< write data + v
XRDY \ / XRDY ignored
L‘— bus inactive ————]

Figure 8-14. Inactive Bus States for IOSTRB
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(M)STRB

(XA

XRW : : : / 5 :

address undefined

(X)D——j——< wiito data ) j : ;
XTRDY \ / (XJRDY ignored
l—-— bus inactive _—.-I u

Figure 8-15. Inactive Bus States for STRB and MSTRB

8-17



External Bus Operation - External Interface Timing

Figure 8-16 illustrates the timing for HOLD and HOLDA. HOLD is an external
asynchronous input. There is a minimum of one cycle delay from when the
processor recognizes HOLD=0 until HOLDA=0. When HOLDA=0, the address,
data buses, and associated strobes are placed in a high-impedance state. All
accesses occurring over an interface are completed before a hold is acknowl-

edged.
i ' i ' i /'_\_J i
M N I N
| | | | |
|
v A N A N S N S N A
—+— | | | |
LT N A ;
i I I I I
| | : | 1
HOIDA | , | N\ | 4 !
| | | |
| | | | |
| | % : 1
STRB
; /( { i \.\-
| | ! | |
1 { 1 | I
RIW :
T T T ! T
| | | | |
A I
T T T | T
| 1 | ! 1
' ' . : ]
D Write Data
1 ] 1 1 /: ; :

'L—— Bus Inactive —-l

Figure 8-16. HOLD and HOLDA Timing
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8.3 Programmable Wait States

Both the parallel and expansion interfaces allow the control of wait-state
generation through the manipulation of their associated memory-mapped
control registers. The SWW field is used to select the mode of wait-state
generation, and the WTCNT field is used to load an internal timer used in the
generation of wait states. The following four modes of wait-state generation
can be used:

® External RDY

° WTCNT-generated RDYyyent

) Logical-AND of RDY and RDYyy¢cnt
° Logical-OR of RDY and RDYycnt

These four modes are used in the generation of the internal ready signal that
controls accesses, RDYjnt. As long as RDYjn; = 1, the current external access
is delayed. When RDYjn = O, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the
primary bus interface is described in the following paragraphs.

RDYwicnt is an internally generated ready signal. When an external access is
begun, the value in WTCNT is ioaded into a counter. WTCNT may be any
value from O through 7. The counter is decremented every H1/H3 clock cycle
until it becomes 0. Once the counter is set to 0, it remains set to 0 until the
next access. While the counter is nonzero, RDYycnt = 1. While the counter
is O, ﬁﬁthcnt = 0.

When SWW = 0 O, RDYj; is only dependent upon RDY. RDYtcnt is ignored.
The truth table for this mode is shown in Table 8-3.
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Table 8-3. Wait-State Generation When SWW =00

RDY RDVy1cnt RDY it
0 0 0
0 1 0
1 0 1
1 1 1

When SWW = 0 1, RDYj,; is only dependent upon RDYyqcnt- RDY is ignored

Table 8-4 shows the truth table for this mode.
Table 8-4. Wait-State Generation When SWW = 0 1

RDYint
0
1
0
1

)
a0 UI
<

When SWW = 1 0, RDYj, is the logical-OR (electrical-AND, since these sig-
nals are low true) of RDY and RDYcnt (see Table 8-5).
Table 8-5. Wait-State Generation When SWW =10

g

RDYnt

RDY

tent

|

g

—ao00|g

=000

wi
0
1
0
1

When SWW = 1 1, RDYj, is the logical-AND (electrical-OR, since these sig-
nals are low true) of RDY and RDYytcnt The truth table for this mode is shown

in Table 8-6.
Table 8-6. Wait-State Generation When SWW =1 1

RDY RDthcnt RDYII"II
0 0 0
0 1 1
1 0 1
1 1 1
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8.4 Programmable Bank Switching

Programmable bank switching provides the capability of switching between
external memory banks without the need for externally inserting wait states
due to memories requiring several cycles to turn off. Bank switching is im-
plemented on the primary bus and not on the expansion bus.

The size of a bank is determined by the number of bits specified to be exam-
ined. For example (see Figure 8-17), if BNKCMP =16, the 16 MSBs of the
address are used to define a bank. Since addresses are 24 bits, the bank size
is specified by the 8 LSBs, yielding a bank size of 256 words in this case. If
BNKCMP > 16, only the 16 MSBs are compared. Banksizes from 28 = 256
to 224 = 16M are allowed. Table 8-7 summarizes the relationship between
BNKCMP, the address bits used to define a bank, and the resulting bank size.

24-bit Address

T
A

23 8|7 0

I-—Number of bits to compare Defines,

bank size u
Figure 8-17. BNKCMP Example

Table 8-7. BNKCMP and Bank Size

BNKCMP MSBs DEFINING A BANK BANK SIZE (32-BIT WORDS)
00000 None 224 = 16M
00001 23 223 = gM
00010 23-22 222 = 4M
00011 23-21 221 = 2M
00100 23-20 220 = 1M
00101 23-19 219 = 512K
00110 23-18 218 = 256K
00111 23-17 217 = 128K
01000 23-16 216 = 64K
01001 23-15 215 = 32K
01010 23-14 214 = 16K
01011 23-13 213 =gK
01100 23-12 212 = 4K
01101 23-11 211 = 2K
01110 23-10 210 = 1K
01111 23-9 29 =512
10000 23-8 28 =256
10001 Reserved Undefined
through

1111
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Internal to the TMS320C30 is a register that contains the MSBs (as defined
by the BNKCMP field) of the last address used for a read or write over the
primary interface. At reset, the register bits are set to zero. |f the MSBs of the
address being used for the current primary interface read do not match those
contained in this internal register, a read cycle is not asserted for one H1/H3
clock cycle. During this extra clock cycle, the address bus switches over to the
new address, but STRB is inactive (high). The contents of the internal register
are replaced with the MSBs being used for the current read of the current ad-
dress. If the MSBs of the address being used for the current read match the
bits in the register, a normal read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When reading from a different memory bank, memory conflicts
are avoided by the insertion of an extra cycle. This feature can be disabled
by setting BNKCMP to 0. The insertion of the extra cycle occurs only when a
read is performed. The changing of the MSBs in the internal register occurs
for all reads and writes over the primary interface.

Figure 8-18 illustrates the addition of an inactive cycle when switches be-
tween banks of memory occur.
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L—extra cycle ——I

Figure 8-18. Bank Switching Example
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Section 9

Peripherals

The TMS320C30 provides two timers, two serial ports, and an on-chip Direct
Memory Access (DMA) controller. These peripheral modules are manipulated
through memory-mapped registers located on the dedicated peripheral bus.

The DMA controller is used to perform input/output operations without in-
terfering with the operation of the CPU. Therefore, it is possible to interface
the TMS320C30 to slow external memories and peripherals (A/D’s, serial
ports, etc.) without reducing the computational throughput of the CPU. The
result is improved system performance and decreased system cost.

Major topics discussed in this section on peripherals are listed below.

o Timers (Section 9.1 on page 9-2)
- Registers
- Pulse generation
- Operation modes

® Serial Ports (Section 9.2 on page 9-9)
- Registers
- Operation configurations
-  Timing

o DMA Controller (Section 9.3 on page 9-26)
- Registers
- VA memory transfer operation
- Synchronization of DMA channels

9-1
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9.1 Timers

9-2

The TMS320C30 timer modules are general-purpose 32-bit timer/event
counters, with two signalling modes and internal or external clocking (see
Figure 9-1). The timer modules can be used to signal to the TMS320C30 or
the external world at specified intervals, or to count external events. With an
internal clock, the timer can be used to signal an external A/D converter to
start a conversion, or it can interrupt the TMS320C30 DMA controller to begin
a data transfer. With an external input, the timer can count external events and
interrupt the CPU after a specified number of events. Available to each timer
is an /0 pin that can be used either as an input clock to the timer, an output
clock signal, or a general-purpose 1/0 pin.

}~+—— INTERNAL CLOCK/2

COUNTER (32-BITS) ) EXTERNAL
_<_G (: CLOCK
—————————— - \ INV

PERIOD REGISTER COUNTER REGISTER
(31-0) (31-0)
‘r32 32
\ \
COMPARATOR

?
PERIOD = COUNTER

=

PULSE GENERATOR

INV
N 1} = TSTAT

TIMER OUT

Figure 9-1. Timer Block Diagram

Three memory-mapped registers are used by each timer. They are:

L Global control register

L ] Period register

® Counter register

The global control register determines the operating mode of the timer, moni-

tors the timer status, and controls the function of the 1/0 pin of the timer. The
period register specifies the timer’s signalling frequency. The counter register
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contains the current value of the incrementing counter. The timer can be in-
cremented on the rising edge or the falling edge of the input clock. The
counter is zeroed whenever its value equals that in the period register. The
pulse generator generates two types of external clock signals: pulse or clock.
The memory map for the timer modules is shown in Figure 9-2.

Register

TIMER GLOBAL CONTROL REGISTER

RESERVED

RESERVED

RESERVED

TIMER COUNTER REGISTER

RESERVED

RESERVED

RESERVED

TIMER PERIOD REGISTER

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

Peripheral Address

Timer 0

808020h
808021h
808022h
808023h
808024h
808025h
808026h
808027h
808028h
808029h
80802Ah
80802Bh
80802Ch
80802Dh
80802Eh
80802Fh

Timer 1

808030h
808031h
808032h
808033h
808034h
808035h
808036h
808037h
808038h
80803%h
80803Ah
80803Bh
80803Ch
80803Dh
80803Eh
80803Fh

Figure 9-2. Memory-Mapped Timer Locations

9.1.1 Timer Global Control Register

The timer global control register is a 32-bit register that contains the global
and port control bits for the timer module. Table 9-1 defines the register bits,

names, and functions. Bits 3-0 are the port control bits.

Bits 11-6 are the

timer global control bits. Figure 9-3 shows the 32-bit register. Note that at
reset, all bits are set to O except for DATIN (set to the value read on TCLK).

9-3




Peripherals - Timers

9-4

Table 9-1. Timer Global Control Register Bits Summary

BITS

NAME

FUNCTION

0

FUNC

FUNC controls the function of TCLK. If FUNC = 0O, TCLK is con-
figured as a general-purpose digital 1/0 port. If FUNC = 1, TCLK
is configured as a timer pin (see Figure 9-6) for a description of the
relationship between FUNC and CLKSRC.

If FUNC = 0 and CLKSRC = 0, TCLK is configured as a general-
purpose 1/0 pin. In this case, if /O = 0, TCLK is configured as a
general-purpose input pin. If I/0 = 1, TCLK is configured as a
general-purpose output pin.

DATOUT

DATOUT drives TCLK when in 1/0 port mode. DATOUT can also
be used as an input to the timer.

DATIN

Data input on TCLK or DATOUT. A write has no effect.

Reserved

Read as 0.

GO

The GO bit resets and starts the timer counter. When GO = 1 and
the timer is not held, the counter is zeroed and begins incrementing
on the next rising edge of the timer input clock. The GO bit is
cleared on the same rising edge. GO = 0 has no effect on the timer.

Counter hold signal. When this bit is zero, the counter is disabled
and held in its current state. [f the timer is driving TCLK, the state
of TCLK is also held. The internal divide-by-two counter is also
held so that the counter can continue where it left off when ALD
is set to 1. The timer registers can be read and modified while the
timer is being held. RESET has priority over HLD. Table 9-2 shows
the effect of writing to GO and HLD.

Clock/Pulse mode control. When C/P = 1, clock mode is chosen
and the signalling of the status flag and external output will have a
50 percent duty cycle. When C/P = 0, the status flag and external
output will be active for one H1 cycle during each timer period (see
Figure 9-4).

CLKSRC

Specifies the source of the timer clock. When CLKSRC = 1, an in-
ternal clock with frequency equal to one-half the H1 frequency is
used to increment the counter. The INV bit has no effect on the
internal clock source. When CLKSRC = 0, an external signal from
the TCLK pin can be used to increment the counter. The external
clock is synchronized internally, thus allowing external asynchro-
nous clock sources not exceeding the specified maximum allowable
external clock frequency. This will be less than f(H1)/2. (See Fig-
ure 9-6 for a description of the relationship between FUNC and
CLKSRC).

10

INV

Inverter control bit. If an external clock source is used and INV =
1, the external clock is inverted as it goes into the counter. If the
output of the pulse generator is routed to TCLK and INV = 1, the
output is inverted before it goes to TCLK (see Figure 9-1). If INV
= 0, no inversion is performed on the input or output of the timer.
The INV bit has no effect, regardless of its value, when TCLK is used
in 1/0 port mode.

11

TSTAT

This bit indicates the status of the timer. It tracks the output of the
uninverted TCLK pin. This flag sets a CPU interrupt on a
transition from O to 1. A write has no effect.

12-31

Reserved

Read as 0.
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31 302928 27 26 25 24 23 22 21 20 19 18 17 16
[oox fox [ox x| o0 [ox [ xx Clxx]oxx oo [ [ [oxx | xx [ xx [ xx |
15 141312 11 10 9 8 7 6 5 4 3 2 1.0
{ xx { xx|xx]| xx| TSTAT [INnv]| CLKSRC [Cc/P| ALD | GO | xx | xx | DATIN | DATOUT| T/0|FUNC]

R/W R/W R/W R/W R/W R/W R R/W R/W R/W

NOTE: xx = Reserved bit, read as O.
R = read, W = write.

Figure 9-3. Timer Global Control Register

Table 9-2 shows the result of a write using specified values of the GO and HLD
bits in the global control register.

Table 9-2. Result of a Write of Specified Values of GO and HLD

GO | HLD RESULT
0 0 All timer operations are held. No reset is performed.
0 1 Timer proceeds from state before write.
1 0 All timer operations are held, including zeroing of the counter. The GO
bit is not cleared until the timer is taken out of hold.
1 1 Timer reset and started.

9.1.2 Timer Period and Counter Registers

The 32-bit timer period register is used to specify the frequency of the timer
signalling. The timer counter register is a 32-bit register, which is reset to zero
whenever it increments to the value of the period register. Both registers are
set to O at reset.

Certain boundary conditions affect timer operation, such as a zero in the pe-
riod register and overflowing the counter. These conditions are listed as fol-
lows:

o When the period and counter registers are zero, the operation of the
timer is dependent upon the C/P mode selected. In pulse mode (C/P =
0), TSTAT s set and remains set. In clock mode (C/P = 1), the width
of the cycle is 2/f(H1) and the external clocks are ignored.

o When the counter register is not 0 and the period register = 0, the
counter will count, roll over to 0, and then behave as described above.

® When the counter register is set to a value greater than the period regis-
ter, the counter may overflow when being incremented. Once the
counter reaches its maximum 32-bit value (OFFFFFFFFh), it simply
clocks over to 0 and continues.

Writes from the peripheral bus override register updates from the counter or
new status updates to the control register.

9-5
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9.1.3 Timer Pulse Generation

9-6

The timer pulse generator (see Figure 9-1) can generate several different ex-
ternal signals. These signals may be inverted with the INV bit. The two basic
modes are pulse mode and clock mode, as shown in Figure 9-4. In both
modes, an internal clock source has a frequency of f(H1)/2, and an external
clock source has a maximum frequency less than f(H1)/2. Refer to timer
tirr;i(ng ;n Appendix A. In pulse mode (C/P = 0), the width of the pulse is
1/f(H1).

| 2/f(H1)
— :1——'- 1/§(H1)
| . |

. . . . .
. . . . . .
. . ‘ . M . M . M . .
. .
. . . N . M . P —
. . .
. . . . . .
. . . . N .
. . .
. . . . .
. . . . N . . .
. . .
g g g
. . . . . . . . . 3 . .
. . . . M . . . . . .
. . N . . . .
.
. . .
.
.

{-——-«'-m(cmsnm }

j@— period register/f(CLKSRC)—#s——

(a) TSTAT AND TIMER OUTPUT (INV = 0) WHEN C/P = 0 (PULSE MODE)

j@—————w—1/f(CLKSRC)
u——i—}—zmm)

|~— period register/f(CLKSRC) —s=| {
l@—————— 2 x period register/f(CLKSRC) ——————————ml

{b) TSTAT AND TIMER OUPUT (INV = 0) WHEN C/P = 1 (CLOCK MODE)

Figure 9-4. Timer Timing
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The rate of timer signaling is determined by the frequency of the timer input
clock and the period register. The following equations are valid with either
an internal or an external timer clock:

f(pulse mode) = f(timer clock)/period register
f(clock mode) = f(timer clock)/(2 x period register)

9.1.4 Timer Operation Modes

The timer can receive its input and send its output in several different modes,
depending upon the setting of CLKSRC, FUNC, and 1/0. The four timer
modes of operation are defined as follows:

(a}

If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal
clock. The internal clock is not affected by the INV bit. In this mode,
TCLK is connected to the I/O port control and can be used as a gener-
al-purpose 1/0 pin (see Figure 9-5). If1/0 = 0, TCLK is configured as
a general-purpose input pin whose state can be read in DATIN. DAT-
OUT has no effect on TCLK or DATIN. If /0 = 1, TCLK is configured
as a general-purpose output pin. DATOUT is placed on TCLK and can
be read in DATIN.

|
INTERNAL |  EXTERNAL
DATOUTINC) ° < : TCLK
I
i
I
DATIN
=0
(a)
I
INTERNAL | EXTERNAL
|
DATOUT — TCLK
|
|
|
DATIN
170 =1

{b)
Figure 9-5. Timer /O Port Configurations

If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal
clock and the timer output goes to TCLK. This value may be inverted
using INV, and the value output on TCLK can be read in DATIN.

If CLKSRC = 0 and FUNC = 0, the timer is driven according to the sta-

tus of the 1/0 bit. If /0 = 0, the timer input comes from TCLK. This value
can be inverted using INV, and the value of TCLK can be read in DATIN.

9-7
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If /0 = 1, TCLK is an output pin. Then TCLK and the timer are both
driven by DATOUT. All 0 to 1 transitions of DATOUT increment the
counter. INV has no effect on DATOUT. The value of DATOUT can be

read in DATIN.

® if CLKSRC = 0 and FUNC = 1, TCLK drives the timer. If INV = 0, all 0
to 1 transitions of TCLK increment the counter. If INV = 1, all 1 to 0
transitions of TCLK increment the counter. The value of TCLK can be

read in DATIN.

Figure 9-6 shows the four timer modes of operation.

TIMER
TIMER IN |-=e—

CLOCK

‘ )

TSTAT 1/0 PORT
CONTROL

INTERNAL | EXTERNAL
INTERNAL ;

TIMER OUT{— ——+TCLK

!
|

CLKSRC = 1 (INTERNAL)
FUNC = 0 (I/O PIN)

(a)

TIMER INTERNAL | EXTERNAL
TIMER IN TCLK
TIMER OUT f— {
TSTAT 1/0 PORT
CONTROL

CLKSRC = O (EXTERNAL)

FUNC = 0 (/O PIN)

(c)

TIMER

INTERNAL | EXTERNAL

TIMER OUT

TIMER IN [a—

INTERNAL I
CLOCK |

'

TSTAT

CLKSRC
FUNC

o

TIMER

TIMER IN

TIMER OUT

'

TSTAT

TCLK
|
I

DATIN

1 (INTERNAL)
1 (TIMER PIN)

{b)

INTERNAL | EXTERNAL

|
TCLK

DATIN

CLKSRC = 0 (EXTERNAL}

FUNC =

1 (TIMER PIN)
(d)

Figure 9-6. Timer Modes as Defined by CLKSRC and FUNC
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9.2 Serial Ports

The two TMS320C30 serial ports are totally independent. Both serial ports
are identical with a complementary set of control registers in each one. Each
serial port can be configured to transfer 8, 16, 24, or 32 bits of data per word.
The clock for each serial port can originate either internally or externally. An
internally generated clock is a divide-down of the clockout frequency (H1).
A continuous transfer mode is available which allows the serial port to transmit
and receive any number of words without new synchronization pulses.

Eight memory-mapped registers are provided for each serial port. They are:

Port global control register

Two port control registers for the six I/O pins
Three port receive/transmit timer registers
Data transmit register

[ Data receive register

@ 6 0 ©°

The global control register controls the global functions of the serial port and
determines the serial port operating mode . Two port control registers control
the functions of the six serial port pins. The transmit buffer contains the next
complete word to be transmitted. The receive buffer contains the last com-
plete word received. Three additional registers are associated with the
transmit/receive sections of the serial port timer. A serial port block diagram
is shown in Figure 9-7, and the memory map of a serial port is shown in Figure
9-8.

9-9
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9-10

l@————— RECEIVE secnou——l |-—TRANSMIT SECTION —=>
CLKR __ CLKX
RECEIVE TSTAT | &kR CLKX | TSTAT TRANSMIT
TIMER (16) o | I TIMER (16)
RINT ‘-l RECEIVE FSX TSR TRANSMIT I—’ XINT
CLOCK | FSX | | FSR fcLock
BITCOUNTER *—®\__ / \ / BIT COUNTER
(8/16/24/32) | _ (8/16/24/32)
!
RSR - * XSR
(32) - - (32)
| | £ 11
LOAD LOAD | LOAD DX DX
CONTROL CONTROL
pR DR Y
DX
LOAD
DRR -
(32) DXR
(32)

Figure 9-7. Serial Port Block Diagram
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Register Peripheral Address

Serial Serial

Port 0 Port 1
PORT GLOBAL CONTROL REGISTER 808040h 808050h
RESERVED 808041h 808051h
FSX/DX/CLKX PORT CONTROL REGISTER 808042h 808052h
FSR/DR/CLKR PORT CONTROL REGISTER 808043h 808053h
R/X TIMER CONTROL REGISTER 808044h 808054h
R/X TIMER COUNTER REGISTER 808045h 808055h
R/X TIMER PERIOD REGISTER 808046h 808056h
RESERVED 808047h 808057h
DATA TRANSMIT REGISTER 808048h 808058h
RESERVED 808049h 808059h
RESERVED 80804Ah 80805Ah
RESERVED 80804Bh 80805Bh
DATA RECEIVE REGISTER 80804Ch 80805Ch
RESERVED 80804Dh 80805Dh
RESERVED 80804Eh 80805Eh
RESERVED 80804Fh 80805Fh

Figure 9-8. Memory-Mapped Locations for the Serial Port

9.2.1 Serial Port Global Control Register

The serial port global control register is a 32-bit register that contains the
global control bits for the serial port. Table 9-3 defines the register bits, bit
names, and bit functions. The register is shown in Figure 9-9.

9-11
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Table 9-3. Serial Port Global Control Register Bits Summary

BIT

NAME

FUNCTION

RRDY

if RRDY = 1, the receive buffer has new data and is ready to be read. A three
H1/H3 cycle delay occurs from the reading of DRR to RRDY = 1. Therising edge
of this signal sets RINT. If RRDY = 0, the receive buffer does not have new data
since the last read. RRDY is set to O at reset and after the receive buffer is read.

XRDY

If XRDY = 1, the transmit buffer has written the last bit of data to the shifter and
is ready for a new word. A three H1/H3 cycle delay occurs from the loading of
the transmit shifter to XRDY being set to 1. The rising edge of this signal sets
XINT. If XRDY = 0, the transmit buffer has not written the last bit of data to the
transmit shifter and is not ready for a new word. XRDY is set to 1 at reset.

FSXOUT

This bit configures the FSX pin as an input (FSXOUT = 0) or an output (FSXOUT
=1).

XSREMPTY

If XSREMPTY = 0, the transmit shift register is empty. |f XSREMPTY = 1, the
transmit shift register is not empty. This bit is set to O at reset or by an XRESET.

RSRFULL

If RSRFULL = 1, an overrun of the receiver has occurred. In continuous mode,
RSRFULL is set to 1 when both RSR and DRR are full. In noncontinuous mode,
RSRFULL is set to 1 when RSR and DRR are full and a new FSR is received. A
read causes this bit to be set to 0. This bit can only be set to 0 by a system reset,
a serial port receive reset (RRESET = 1), or a read. When the receiver tries to set
RSRFULL to a 1 at the same time that the global register is read, the receiver will
dominate and RSRFULL is set to 1. If RSRFULL = 0, no overrun of the receiver
has occurred.

HS

if HS = 1, the handshake mode is enabled. If HS = 0, the handshake mode is
disabled.

XCLKSRCE

If XCLKSRCE = 1, the internal transmit clock is used. if XCLKSRCE = 0, the
external transmit clock is used.

RCLKSRCE

If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE = 0, the ex-
ternal receive clock is used.

XVAREN

This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate sig-
nalling when transmitting. With a fixed data rate, FSX is active for at least one
XCLK cycle, and then goes inactive before transmission begins. With variable
data rate, FSX is active while all bits are being transmitted. When using an ex-
ternal FSX and variable data rate signaling, the DX pin is driven by the transmitter
when FSX is held active or when a word is being shifted out.

RVAREN

This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate sig-
nalling when receiving. With a fixed data rate, FSR is active for at least one RCLK
cycle, and then goes inactive before the reception begins. With variable data rate,
FSR is active while all bits are being received.

10

XFSM

Transmit frame sync mode. Configures the port for continuous mode operation
{(XFSM = 1) or standard mode (XFSM = 0). In continuous mode, only the first
word of a block generates a sync pulse, and the rest are simply transmitted con-
tinuously to the end of the block. In standard mode, each word has an associated
sync pulse.

1

RFSM

Receive frame sync mode. Configures the port for continuous mode (RFSM =
1) or standard mode (RFSM = 0) operation. In continuous mode, only the first
word of a block generates a sync pulse, and the rest are simply received contin-
uously without expectation of another sync pulse. In standard mode, each word
received has an associated sync pulse.

12

CLKXP

CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP = 1, CLKX is active
fow.
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Table 9-3. Serial Port Global Control Register Bits Summary (Concluded)

BIT

NAME

FUNCTION

13

CLKRP

CLKR polarity. |f CLKRP = 0, CLKR is active high. If CLKRP = 1, CLKR is active
low.

14

DXP

DX polarity. If DXP = 0, DX is active high. If DXP = 1, DX is active low.

15

DRP

DR polarity. If DRP = 0, DR is active high. If DRP = 1, DR is active low.

16

FSXP

FSX polarity. If FSXP = 0, FSX is active high. if FSXP = 1, FSX is active low.

17

FSRP

FSR polarity. if FSRP = 0, FSR is active high. If FSRP = 1, FSR is active low.

18-19

XLEN

This bit defines the word length of serial data transmitted. All data is assumed
to be right-justified in the transmit buffer when fewer than 32 bits are specified.
00 --- 8 bits 10 --- 24 bits
01 --- 16 bits 11 --- 32 bits

20-21

RLEN

This bit defines the word length of serial data received. All data is right-justified
in the receive buffer.

00 --- 8 bits 10 --- 24 bits

01 --- 16 bits 11 --- 32 bits

22

XTINT

Transmit timer interrupt enable. if XTINT = 0, the transmit timer interrupt is dis-
abled. If XTINT = 1, the transmit timer interrupt is enabled.

23

XINT

Transmit interrupt enable. If XINT = O, the transmit interrupt is disabled. If XINT
= 1, the transmit interrupt is enabled. Note that the CPU transmit interrupt flag
XINT is the logical OR of the enabled transmit timer interrupt and the enabled
transmit interrupt.

24

RTINT

Receive timer interrupt enable. If RTINT = O, the receive timer interrupt is disa-
bled. If RTINT = 1, the receive timer interrupt is enabled.

25

RINT

Receive interrupt enable. If RINT = 0, the receive interrupt is disabled. If RINT
= 1, the receive interrupt is enabled. Note that the CPU receive interrupt flag
RINT is the OR of the enabled receive timer interrupt and the enabled receive
interrupt

26

XRESET

Transmit reset. |f XRESET = 0, the transmit side of the serial port is reset. To take
the transmit side of the serial port out of reset, XRESET should be set to 1.
However, XRESET should not be set to 1 until at least three cycles after XRESET
goes inactive. This applies only to system reset. Setting XRESET to 0 does not
change the contents of any of the serial port contro! registers. It places the
transmitter in a state corresponding to the beginning of a frame of data. Resetting
the transmitter generates a transmit interrupt. This bit should be set at the same
time the mode of the transmitter is set. XFSM can be toggled without resetting
the global control register.

27

RRESET

Receive reset. If RRESET = 0, the receive side of the serial port is reset. To take
the transmit side of the serial port out of reset, XRESET should be setto 1. Set-
ting RRESET to O does not change the contents of any of the serial port control
registers. It places the receiver in a state corresponding to the beginning of a
frame of data. This bit should be set at the same time the mode of the receiver
is set. RFSM can be toggled without resetting the global control register.

28-31

Reserved

Read as 0.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| xx | xx | xx | xx |RRESET|XRESET|RINT|RTINT[XINT [XTINT| RLEN XLEN  |FsrpP|FsxP|
R/IW R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
15 14 13 12 1110 9 8 7 6 5 4 3 2 1.0
DRP| DXP [CLKRP|CLKXP|RFSM|XFSM|RVAREN|XVAREN|RCLK|XCLK|HS| RSR| XSR [FSXOUT|XRDY|RRDY
SRCE|SRCE|  [FULL|EMPTY
R/W R/W R/W R/W R/W R/W R/W RMW RW RWRWR R RW R R

NOTE: xx =Reserved bit, read as 0.

R = read, W = write.

Figure 9-9. Serial Port Global Control Register

9.2.2 FSX/DX/CLKX Port Control Register

This 32-bit port control register controls the function of the serial port FSX,
DX, and CLKX pins. At reset, all bits are set to 0. Table 9-4 defines the register
bits, bit names, and functions. Figure 9-10 shows this port control register.

Table 9-4. FSX/DX/CLKX Port Control Register Bits Summary

BIT NAME FUNCTION

0 CLKXFUNC CLKXFUNC controls the function of CLKX. If CLKXFUNC
= 0, CLKX is configured as a general-purpose digital 1/0
port. If CLKXFUNC = 1, CLKX is a serial port pin.

1 CLKXI/0 If CLKXT/O = 0, CLKR is configured as a general-purpose
input pin. If CLKXI/O = 1, CLKX is configured as a gener-
al-purpose output pin.

2 CLKXDATOUT| Data output on CLKX.

3 CLKXDATIN Data input on CLKX. A write has no effect.

4 DXFUNC DXFUNC controls the function of DX. If DXFUNC = 0, DX
is configured as a general-purpose digital {/O port. If
DXFUNC = 1, DX is a serial port pin.

5 DX1/0 If DX1/0 = 0, DX is configured as a general-purpose input
pin. If DXI/O = 1, DX is configured as a general-purpose
output pin.

6 DXDATOUT Data output on DX.

DXDATIN Data input on DX. A write has no effect.

FSXFUNC FSXFUNC controls the function of FSX. i FSXFUNC = 0,
FSX is configured as a general-purpose digital 1/0 port. If
FSXFUNC = 1, FSX is a serial port pin.

9 FSXI/0 If FSXi/0 = 0, FSX is configured as a general-purpose input
pin. If FSXI/O = 1, FSXis configured as a general-purpose
output pin.

10 FSXDATOUT | Data output on FSX.
11 FSXDATIN Data input on FSX. A write has no effect.
12-31 | Reserved Read as O.




Peripherals - Serial Ports

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Poc o P P ] o | e o oo oo | oo ok [ ] s | oxx ]
156 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xx | xx | xx [ xx | FSX FSX ESX | FSX DX DX DX | DX | CLKX | CLKX [CLKX|CLKX
DATIN | DATOUT| 1/0 |FUNC] DATIN |DATOUT| 1/0 |FUNC] DATIN |DATOUT| 1/0 |[FUNC

R R/W R/W R/W R R/W R/W R/W R R/W R/W R/W
NOTE: xx =Reserved bit, read as 0.
R = read, W = write.

Figure 9-10. FSX/DX/CLKX Port Control Register

9.2.3 FSR/DR/CLKR Port Control Register

This 32-bit port control register is controlled by the function of the serial port
FSR, DR, and CLKR pins. At reset, all bits are set to 0. Table 9-5 defines the
register bits, the bit names, and functions. Figure 9-11 illustrates this port
control register.

Table 9-56. FSR/DR/CLKR Port Control Register Bits Summary

BIT NAME FUNCTION

0 CLKRFUNC CLKRFUNC controls the function of CLKR. If CLKRFUNC
= 0, CLKR is configured as a general-purpose digital 1/0
port. If CLKRFUNC = 1, CLKR is a serial port pin.

1 CLKRI/O If CLKRI/O = 0, C_LKR is configured as a general-purpose
input pin. If CLKRI/O = 1, CLKR is configured as a gener-
al-purpose output pin.

2 CLKRDATOUT| Data output on CLKR.
CLKRDATIN Data input on CLKR. A write has no effect.

DRFUNC DRFUNC controls the function of DR. If DRFUNC = 0, DR
is configured as a general-purpose digital 1/0 port. |f
DRFUNC = 1, DR is a serial port pin.

5 DRI/O If DRT/O = 0, DR is configured as a general-purpose input
pin. If DRI/O = 1, TCLK is configured as a general-purpose
output pin.

6 DRDATOUT Data output on DR.

DRDATIN Data input on DR. A write has no effect.
FSRFUNC FSRFUNC controls the function of FSR. If FSRFUNC = 0,

FSR is configured as a general-purpose digital {/0O port. If
FSRFUNC = 1, FSR is a serial port pin.

9 FSRI/0O If FSRI/O = 0, FSR is configured as a general-purpose input
pin. 1f FSRI/0 = 1, FSR is configured as a general-purpose
output pin.

10 FSRDATOUT | Data output on FSR.

11 FSRDATIN Data input on FSR. A write has no effect.

12-31 | Reserved Read as 0.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
rxx Pax [ o] e ] o | oxx [ xx | xx [ oxx x| oo | xx [ xx | oxx I XX I
156 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xx txx | xx | xx | FSR FSR FSR | FSR DR DR DR | DR | CLKR | CLKR |CLKR|CLKR
DATIN | DATOUT| 1/0 |[FUNC] DATIN | DATOUT| 1/0 JFUNC| DATIN | DATOUT] /0 |FUNC

R R/W  R/W R/W R R/W  R/W R/W R R/W  R/W R/W

NOTE: xx =Reserved bit, read as 0.
R = read, W = write.

Figure 9-11. FSR/DR/CLKR Port Control Register

9.2.4 Receive/Transmit Timer Control Register

A 32-bit receive/transmit timer control register contains the control bits for the
timer module. At reset, all bits are set to 0. Table 9-6 lists the register bits, bit
names, and functions. Bits 5-0 control the transmitter timer. Bits 11-6 control
the receiver timer. Figure 9-12 shows the register.
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Table 9-6.

Receive/Transmit Timer Control Register

BIT

NAME

FUNCTION

XGO

The XGO bit resets and starts the transmit timer counter. When
XGO is set to 1 and the timer is not held, the counter is zeroed
and begins incrementing on the next rising edge of the timer
input clock. The XGO bit is cleared on the same rising edge.
Writing O to XGO has no effect on the transmit timer.

Transmit counter hold signal. When this bit is set to 0, the
counter is disabled and held in its current state. The internal
divide-by-two counter is also held so that the counter will
continue where it left off when XHLD is set to 1. The timer
registers may be read and madified while the timer is being
held. RESET has priority over XHLD.

XC/P

XClock/Pulse mode control. When XC/P = 1, the clock mode
is chosen. The signalling of the status flag and external output
has a 50-percent duty cycle. When XC/P = 0, the status flag
and external output are active for one CLKOUT cycle during
each timer period.

XCLKSRC

This bit specifies the source of the transmit timer clock. When
XCLKSRC = 1, an internal clock with frequency equal to one-
half the CLKOUT frequency is used to increment the counter.
When XCLKSRC = 0, an external signal from the CLKX pin can
be used to increment the counter. The external clock source is
synchronized internally, thus allowing for external asynchro-
nous clock sources that do not exceed the specified maximum
allowable external clock frequency, i.e., less than f(H1)/2.6.

Reserved

Read as zero.

XTSTAT

This bit indicates the status of the receive timer. It tracks what
would be the output of the uninverted CLKX pin. This flag sets
a CPU interrupt on a transition from O to 1. A write has no
effect.

RGO

The RGO bit resets and starts the receive timer counter. When
RGO is set to 1 and the timer is not held, the counter is zeroed
and begins incrementing on the next rising edge of the timer
input clock. The RGO bit is cleared on the same rising edge.
Writing 0 to RGO has no effect on the receive timer.

Receive counter hold signal. When this bit is set to 0, the
counter is disabled and held in its current state. The internal
divide-by-two counter is aiso held so that the counter will
continue where it left off when RHLD is set to 1. The timer
registers may be read and modified while the timer is being
held. RESET has priority over RHLD.
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Table 9-6. Receive/Transmit Timer Control Register (Concluded)

BIT

NAME

FUNCTION

RC/P

RClock/Pulse mode control. When RC/P = 1, the clock mode
is chosen. The signalling of the status flag and external output
has a 50-percent duty cycle. When RC/P = O, the status flag
and external output are active for one CLKOUT cycle during
each timer period.

RCLKSRC

This bit specifies the source of the receive timer clock. When
RCLKSRC = 1, an internal clock with frequency equal to one-
half the CLKOUT frequency is used to increment the counter.
When RCLKSRC = 0, an external signal from the CLKR pin can
be used to increment the counter. The external clock source is
synchronized internally, thus allowing for external asynchro-
nous clock sources that do not exceed the specified maximum
allowable external clock frequency, i.e., less than f(H1)/2.6.

10

Reserved

Read as zero.

11

RTSTAT

This bit indicates the status of the receive timer. It tracks what
would be the output of the uninverted CLKR pin. This flag sets
a CPU interrupt on a transition from O to 1. A write has no
effect.

12-31

Reserved

Read as 0.

31 30 29 28 27

26 25

24 23 22 21 20 19 18 17 16

IXXlxXIXX'XXI XX

fac] xx

ENEEEEREIERENNE NI

15 14 13 12 11

10 9

8 7 6 5 4 3 2 1 0

[ xx [ xx [ xx | xx | RTsTAT [ xx | ReLksre [re/P| RALD | reo | xTsTAT [ xx | XcLksre [xc/ Bl XALD [ xco0 |

R
n NOTE: xx =Reserved bit, read as 0.
R = read, W = write.

R/W

R/W R/W R/W R R/W R/W R/W R/W

Figure 9-12. Receive/Transmit Timer Control Register

9.2.56 Receive/Transmit Timer Counter Register

The timer counter register is a 32-bit register (see Figure 9-13). Bits 15-0 are
the transmit timer counter, and bits 31-16 are the receive timer counter. Each
counter is set to 0 whenever it increments to the value of the counter. It is also
set to O at reset.

31

16

RECEIVE COUNTER i

15

TRANSMIT COUNTER |

NOTE: All bits are read/write.

Figure 9-13. Receive/Transmit Timer Counter Register
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9.2.6 Receive/Transmit Timer Period Register

The timer period register is a 32-bit register (see Figure 9-14) Bits 15-0 are
the timer transmit period, and bits 31-16 are the receive period. Each register
is used to specify the period of the timer. It is also set to O at reset.

31 16
[ RECEIVE PERIOD ]

15 0
[ TRANSMIT PERIOD ]

NOTE: All bits are read/write.

Figure 9-14. Receive/Transmit Timer Period Register

9.2.7 Data Transmit Register

When the data transmit register (DXR) is loaded, the transmitter loads the
word into the transmit shift register (XSR), and the bits are shifted out. The
delay from a write to DXR until an FSX occurs (or can be accepted) is two
CLKX cycles. The word is not loaded into the shift register until the shifter is
empty. When DXR is loaded into XSR, the XRDY bit is set, specifying that the
buffer is available to receive the next word. Four tap points within the transmit
shift register are used to transmit the word. These tap points correspond to
the four data word sizes and are iilustrated in Figure 9-15. The shift is a left-
shift (LSB to MSB) with the data shifted out of the MSB corresponding to the
appropriate tap point.

" shift direction

31 24 23 16 15 8 7 0
| | | |

32-bit 24-bit 16-bit 8-bit

word tap word tap word tap word tap

Figure 9-15. Transmit Buffer Shift Operation

9.2.8 Data Receive Register

When serial data is input, the receiver shifts the bits into the receive shift reg-
ister (RSR). When the specified number of bits are shifted in, the data receive
register (DRR) is loaded from RSR and the RRDY status bit is set. The receiver
is double-buffered. If the DRR has not been read and the RSR is full, the re-
ceiver is frozen. New data coming into the DR pin is ignored. The receive
shifter will not write over the DRR. The DRR must be read to allow new data
in the RSR to be transferred to the DRR. When a write to DRR occurs at the
same time that a RSR to DRR transfer takes place, the RSR to DRR transfer
has priority.

Data is shifted to the left (LSB to MSB). Figure 9-16 illustrates what happens
when words less than 32 bits are shifted into the serial port. In this figure, it
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is assumed that an 8-bit word is being received and that the upper three bytes
of the receive buffer are originally undefined. In the first portion of the figure,
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the
left. When the data receive register is read, both bytes a and b are read.

= shift direction <
31 24 23 16 15 8 7 0
After Byte a l X I b3 I X | a 41

After Byte b | X | X | a [ b ]

Figure 9-16. Receive Buffer Shift Operation

9.2.9 Serial Port Operation Configurations

Several configurations are provided for the operation of the serial port clocks
and timer. The clocks for each serial port can originate either internally or ex-
ternally. Figure 9-17 shows serial port clocking in the /O mode (FUNC = 0)
when CLKX is either an input or an output. Figure 9-18 shows clocking in the
serial port mode (FUNC = 1). Both figures use a transmit section for an ex-
ample. The same relationship holds for a receive section.
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INTERNAL | EXTERNAL INTERNALI EXTERNAL

I [
TSTAT INTERNAL | TSTAT [

= TIMER IN |~as—CLOCK |

DATOUT DATOUT

DATIN DATIN
FUNC = 0 (I/0 MODE) FUNC = O (/O MODE)
CLKXI/0 = 1 (CLKX, AN INPUT) CLKXI/O = 1 (CLKX, AN OUTPUT)
XCLKSRC = 1 (INTERNAL CLK FOR TIMER) XCLKSRC = O (EXTERNAL CLK FOR TIMER)
(a) (b)
INTERNAL | EXTERNAL INTERNAL i EXTERNAL

TSAT - INTERNAL
CLOCK

|

|
O-<—CLKX

[

[

DATOUT (NC) —O DATOUT (INC)—O

Y

DATIN DATIN ¢
FUNC = 0 (I/0 MODE) FUNC = O (YO MODE)
CLKXI/O = 1 (CLKX, AN INPUT) CLKXI/O = 0 (CLKX, AN INPUT)
XCLKSRC = 1 (INTERNAL CLK FOR TIMER) XCLKSRC = O (EXTERNAL CLK FOR TIMER)
(c) (d)

Figure 9-17. Serial Port Clocking in I/0 Mode
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INTERNAL | EXTERNAL INTERNAL | EXTERNAL
TSTAT TSTAT

[
INTERNAL INTERNAL
——g{_TmER J=— T : —] TR }— clock
CLKX
CLKX
Dot~ ] ECnSRYG

DATOUT (NC) —0O INV DATOUT (NC)—O
DATIN ———— DATIN —a——- INV
FUNC = 1 (SERIAL PORT MODE)
FUNC = 1 (SERIAL PORT MODE) XCLKSRCE = O (INPUT SERIAL PORT CLK)
XCLKSRCE = 1 {OUTPUT SERIAL PORT CLK) XCLKSRC = 1 (INTERNAL CLK FOR TIMER}
XCLKSRC = OOR1 (b)
(a)

TSTAT INTERNAL } EXTERNAL

|

. - cLix
|
[xsn =9
INV

DATOUT NC)—0O
DATIN ——a———]

FUNC = 1 (SERIAL PORT MODE)
XCLKSRCE = O (INPUT SERIAL PORT CLK)
XCLKSRC = 0 (EXTERNAL CLK FOR TIMER)
(c)

Figure 9-18. Serial Port Clocking in Serial Port Mode
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9.2.10 Serial Port Timing

The formula for calculating the frequency of the serial port clock with an in-
ternally generated clock is dependent upon the operation mode of the serial
port timers, defined as:

f (pulse mode) = f (timer clock)/period register
f (clock mode) = f (timer clock)/(2 x period register)

An externally generated serial port clock (CLKX or CLKR) has a maximum
frequency less than f(H1)/2.6. See serial port timing in Appendix A.

Transmit data is clocked out on the rising edge of the selected serial port clock.
Receive data is latched into the receive shift register on the falling edge of the
serial port clock. All data is transmitted and loaded MSB first and right-justi-
fied. If less than 32 bits are transferred, the data is right-justified in the 32-bit
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are the
bits that are transmitted.

The transmit ready (XRDY) signal specifies that the data transmit register
(DXR) is available to be loaded with new data. XRDY goes active as soon
as the data is loaded into the transmit shift register (XSR). The last word may
still be shifting out when XRDY goes active. If DXR is loaded before the last
word has completed transmission, the data bits transmitted will be consec-
utive, i.e., the LSB of the first word immediately precedes the MSB of the
second, with all signalling valid as in two separate transmits. XRDY goes in-
active when DXR is loaded, and remains inactive until the data is loaded into
the shifter.

The receive ready (RRDY) signal is active as long as a new word of data is
loaded into the data receive register and has not been read. As soon as the

data is read, the RRDY bit is turned off. u
When FSX is specified as an output, the activity of the signal is determined

solely by the internal state of the serial port. When a fixed data rate is speci-
fied, FSX goes active when DXR is loaded into XSR to be transmitted out.
One serial clock cycle later, FSX turns inactive and data transmission begins.
When a variable data rate is specified, the FSX pin is activated when the data
transmission begins, and remains active during the entire transmission of the
word. Again, the data is transmitted one clock cycle after it is loaded into the
data transmit register.

An input FSX in the fixed data rate mode should go active for at least one se-
rial clock cycle and then inactive to initiate the data transfer. The transmitter
then transmits the number of bits specified by the LEN bits. In the variable
data rate mode, the transmitter begins transmitting as soon as FSX goes active
until the number of specified bits has been shifted out. In the variable data
rate mode, when the FSX status changes prior to all the data bits being shifted
out, the transmission completes and the DX pin is placed in a high impedance
state. An FSR input is exactly complementary to the FSX.

When using an external FSX, if DXR and XSR are empty, a write to DXR re-
sults in a DXR to XSR transfer. This data is held in the XSR until an FSX oc-
curs. When the external FSX is received, the XSR begins shifting the data. If
XSR is waiting for the external FSX, a write to DXR will change DXR, but a
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9-24

DXR to XSR transfer will not occur. XSR begins shifting when the external
FSX is received, or when reset using XRESET.

Continuous Transmit and Receive Modes

When continuous mode is chosen, consecutive writes do not generate or ex-
pect new sync pulse signalling. Only the first word of a block begins with an
active synchronization. Thereafter, data continues to be transmitted as long
as new data is loaded into DXR before the last word has been transmitted.
As soon as TXRDY is active and all of the data has been transmitted out of the

_shift register, the DX pin is placed in a high impedance state, and a subsequent

write to DXR initiates a new block and a new FSX.

Similarly with FSR, the receiver continues shifting in new data and loading
DRR. If the data receive buffer is not read before the next word is shifted in,
subsequent incoming data will be lost. The RFSM bit can be used to termi-
nate the receive continuous mode.
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Handshake Mode

The handshake mode (HS = 1) allows for direct connection between proces-
sors. In this mode, all data words are transmitted with a leading 1 (see Figure
9-19). For example, if an 8-bit word is to be transmitted, the first bit sent is
a1, followed by the 8-bit data word.

In this mode, once the serial port transmits a word, it will not transmit another
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that
precedes every data word is, in effect, a request bit.

data word
(8-bits)

KOO

Figure 9-19. Data Word Format in Handshake Mode

S )
Z__1

After a serial port receives a word (with the leading 1), and it has been read
from the DRR, it sends a single O to the transmitting serial port. Thus, the
single O bit acts as an acknowledge bit (see Figure 9-20). This single ac-
knowledge bit is sent every time the DRR is read, even if the DRR does not

contain new data.
e —
\single zero

Figure 9-20. Single Zero Sent as an Acknowledge

When the serial port is placed in the handshake mode, the insertion and de-
letion of a leading 1 for transmitted data, the sending of a O for acknowl-
edgement of received data, and the waiting for this acknowledge bit are all
performed automatically. Using this scheme, it is simple to connect processors
with no external hardware and guarantee secure communication. A typical
configuration is shown in Figure 9-21.

In the handshake mode, FSX is automatically configured as an output. Con-
tinuous mode is automatically disabled. After a system reset or XRESET, the
transmitter is always permitted to transmit. The transmitter and receiver must
be reset when entering the handshake mode.
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TMS320C30 #1 TMS320C30 #2
CLKX ] CLKR
FSX & FSR
DX |——{ DR
CLKR | CLKX
FSR | FSX

DR j#————1 DX

Figure 9-21. Direct Connection Using Handshake Mode

9.2.11 Serial Port Interrupt Sources

A serial port has four interrupt sources:

1)  The transmit timer interrupt: The rising edge of XTSTAT causes a single
cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is
disabied.

2)  The receive timer interrupt: The rising edge of RTSTAT causes a single
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is
disabled.

3) The transmitter interrupt: Occurs immediately following a DXR to XSR
transfer. The transmitter interrupt is a single cycle pulse. When the
global serial-port contro! register XINT is O, this interrupt pulse is disa-
bled.

4) The receiver interrupt: Occurs immediately following a RSR to DRR
transfer. The receiver interrupt is a single cycle pulse. When the global
serial-port control register RINT is O, this interrupt pulse is disabled.

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse
to create the CPU transmit interrupt flag XINT. The receive timer interrupt
pulse is ORed with the receiver interrupt pulse to create the CPU receive in-
terrupt flag RINT.

9.2.12 Serial Port Functional Operation

9-26

The following paragraphs and figures illustrate the functional timing of the
various serial port modes of operation. The timing descriptions are presented
assuming that all signal polarities are configured to be positive, i.e.
CLKXP=CLKRP= DXP=DRP=FSXP=FSRP=0. Logical timing, in situations
where one or more of these polarities are inverted, is the same but with respect
to the opposite polarity reference points, i.e. rising vs. falling edges, etc.

These discussions pertain to the numerous operating modes and configura-
tions of the serial port logic. When it is necessary to switch operating modes
or change configurations of the serial port, this should be done only when
XRESET or or RRESET are asserted (low) as appropriate. Therefore, when
transmit configurations are modified, XRESET should be low, and when re-
ceive configurations are modified, RRESET should be low. When in handshake
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FSR/FSX
(EXTERNAL)
FSX
(INTERNAL)

mode, however, since the transmitter and receiver are interrelated, any con-
figuration changes should be made with XRESET and RRESET both low.

All of the various serial port operating configurations can be broadly classified
in two categories: fixed data rate timing and variable data rate timing. The
following paragraphs discuss fixed and variable data rate operation and all of
their variations.

Fixed Data Rate Timing Operation

Fixed data rate serial port transfers can occur in two varieties: burst mode and
continuous mode. In burst mode operation, transfers of single words are se-
parated by periods of inactivity on the serial port. In continuous mode, there
are no gaps between successive word tranfers, i.e., the first bit of a new word
is transferred on the next CLKX/R pulse following the last bit of the previous
word. This occurs continuously until the process is terminated.

In burst mode with fixed data rate timing, FSX/FSR pulses initiate transfers,
and each transfer involves a single word. With an internally generated FSX
(see Figure 9-22), transmission is initiated by loading DXR. In this mode,
there is an approximately 2.5 CLKX cycle delay (depending on CLKX and H1
frequencies) from DXR being loaded until FSX occurs. With an external FSX,
the FSX pulse initiates the transfer and the 2.5 cycle delay effectively becomes
a setup requirement for loading DXR with respect to FSX. Therefore, in this
case, DXR must be loaded no later than 3 CLKX cycles before FSX occurs.
Once the XSR is loaded from the DXR, an XINT is generated.

ewxmn__ [ L ML LML

____________________ AN ———— e

DXR XINT RINT
LOADED

Figure 9-22. Fixed Burst Mode

In receive operations, once a transfer is initiated, FSR is ignored until the last
bit. For burst mode transfers, FSR must be low during the last bit, or another
transfer will be initiated. After a full word has been received and transfered to
the DRR, an RINT is generated.

In fixed data rate mode, continuous transfers may be performed even if
R/XFSM=0 as long as properly timed frame synchronization is provided, or if
DXR is reloaded each cycle (with an internally generated FSX), see Figure
9-23.
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wor LML L LM e e e e

FSX

(INTERNAL)
FSR/FSX
(EXTERNAL)
DR/DX
L {
XINT XINT XINT
DXR DXR RINT RINT
LOADED LOADED LOAD DXR LOAD DXR
READ DRR READ DRR

Figure 9-23. Fixed Continuous Mode With Frame Synch

For receive operations and with externally generated FSX, once transfers have
begun, frame sync pulses are only required during the last bit transferred to
initiate another contiguous transfer. Otherwise, frame sync inputs are ighored.
Therefore, continuous transfers will occur if frame sync is held high. With an
internally generated FSX, there is an approximately 2.5 CLKX cycle delay fol-
lowing DXR being loaded before FSX occurs. This delay occurs each time
DXR is loaded, therefore, during continuous transmission, the instruction
which loads DXR must be executed by the N-3 bit, (for an N-bit trans-
mission). Since delays due to pipelining may vary, a conservative margin of
safety should be incorporated in accounting for this delay.

Once the process begins, an XINT and an RINT are generated at the beginning
of each transfer. The XINT indicates that the XSR has been loaded from DXR,
and can be used to cause DXR to be reloaded. To maintain continuous trans-
mission in this mode, especially with an interally generated FSX, DXR must
be reloaded early in the ongoing transfer.

The RINT indicates that a full word has been received and transferred into the
DRR. RINT is therefore commonly used to indicate an appropriate time to read
DRR.

Continuous transfers are terminated by discontinuing frame sync pulses or, in
the case of internally generated FSX, not reloading DXR.

Continuous serial port transfers can be accomplished without the use of frame
sync pulses if R/XFSM are set to one. In this mode, operation of the serial
port is similar to continuous operation with frame sync except that a frame
sync pulse is involved only in the first word transferred, and no further frame
sync pulses are used. Following the first word transferred (see Figure 9-24),
no internal frame sync pulses are generated, and frame sync inputs are ig-
nored. Additionally, R/XFSM should be set prior to or during the first word
transferred, and must be set no later than the transfer of the N-1 bit of the first

9-28



Peripherals - Serial Ports

word, except for transmit operations. For transmit operations in the fixed data
rate mode, XFSM must be set no later than the N-2 bit. Clearing R/XFSM
must be performed no later than the N-1 bit to be recognized in the current
cycle.

cwn ™ _ L L L Lt e

FSR/FSX R
(EXTERNAL)
FSX I 1 n 5t
{INTERNAL) i i
DRIDX —— RO O X CE
DXR XINT SET XINT ‘ XINT
LOADED RIXFSM RINT RINT
DXR LOAD DXR LOAD DXR
LOADED READ DRR READ DRR

Figure 9-24. Fixed Continuous Mode Without Frame Synch

Timing of RINT and XINT and data transfers to and from DXR and DRR, re-
spectively, are the same as in fixed data rate continuous mode with frame sync.
This mode of operation also exhibits the same 2.5 CLKX cycle delay following
DXR being loaded before an internal FSX is generated. As in the case of
continuous operation in fixed data rate mode with frame sync, DXR must be
reloaded no later than transmission of the N-3 bit.

When using continuous operation in fixed data rate mode, R/XFSM may be
set and cleared as desired, even during active transfers, to enable or disable the
use of frame sync pulses as dictated by system requirements. Under most
conditions, the effect of changing the state of R/XFSM occurs during the
transfer in which the R/XFSM change was made, provided the change was
made early enough in the transfer. For transmit operations with internal FSX
in fixed data rate mode, however, a one word delay occurs before frame sync
pulse generation resumes when clearing XFSM to zero (see Figure 9-25).
Therefore, one additional word is transferred in this case before the next FSX
pulse is generated. Also note that, as discussed previously, clearing XFSM
will be recognized during the current word being transmitted as long as XFSM
is cleared no later than the N-1 bit. Setting XFSM is recognized as long as
XFSM is set no later than the N-2 bit.
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| [ |

| |

1ST WORD 2ND WORD { 3RD WORD | 4THWORD | 5THWORD |
| | |

cLKx mumvwmuuwwm

14 Sy IRy SN oy N

DX = D XEX D DERX e XD DEXEDCEXEDGXE.
{

LOAD SET RESET
DXR XFSM XFSM

Figure 9-25. Exiting Fixed Continuous Mode Without Frame Synch, FSX Internal

Variable Data Rate Timing Operation

Variable data rate timing also supports operation in either burst or continuous
mode. Burst mode operation with variable data rate timing is similar to burst
mode operation with fixed data rate timing. With variable data rate timing (see
Figure 9-26) however, FSX/R and data timing differs slightly at the beginning
and end of transfers. Specifically, there are three major differences between
fixed and variable data rate timing.

FSR/FSX
(EXTERNAL)

FSX
(INTERNAL)

CLKX/R l I | I l l l I l I | J u I_I |_| I_I l—]

DXR XINT RINT
LOADED

Figure 9-26. Variable Burst Mode

First, FSX/R pulses typically last for the entire transfer interval, although FSR
and external FSX are ignored after the first bit transferred. FSX/R pulses in
fixed data rate mode typically last only one CLKX/R cycle, but can last ionger.

Second, data transfer begins during the CLKX/R cycle in which FSX/R occurs,
rather than the CLKX/R cycle following FSX/R, as is the case with fixed data
rate timing.
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Finally, with variable data rate timing, frame sync inputs are ignored until the
end of the last bit transferred, rather than the beginning of the last bit trans-
ferred as is the case with fixed data rate timing.

When transmitting continuously in variable data rate mode with frame sync,
timing is the same as for fixed data rate mode, besides the differences between
these two modes as described under burst mode operation with variable data
rate timing. The only exception to this is that when operating continuously
in variable data rate mode (see Figure 9-27), DXR must be reloaded no later
than the N-4 bit to maintain continuous operation, as opposed to the N-3 bit
for fixed data rate mode.

S W s I s O Y s T O Yy Y N s Yy T W

FSR/FSX
(EXTERNAL)
FSX 4t i
(INTERNAL) I
«
DX/DR —_— AT X, X AN X B X'f,’ X__ 8N _X_c1_X_c2 X
{f 4%
DXR XILT XINT I XINT
LOADED RINT RINT
LOAD LOAD DXR LOAD DXR
DXR READ DRR READ DRR

Figure 9-27. Variable Continuous Mode With Frame Synch

Continuous operation in variable data rate mode without frame sync is also

Figure 9-28), DXR must be reloaded no later than the N-4 bit to maintain
continuous operation. Additionally, when R/XFSM is set or cleared in the

similar to continuous operation without frame sync in fixed data rate mode.
As with variable data rate mode continuous operation with frame sync (see
variable data rate mode, the modification must be made no later than the N-1
bit, for the result to be affected in the current transfer.
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FSRIFSX
(EXTERNAL)
FSX
(INTERNAL)
DX/DR
XINT I SET XINT XINT
DXR DXR R/XFSM RINT RINT
LOADED LOADED LOAD DXR LOAD DXR
READ DRR READ DRR

Figure 9-28. Variable Continuous Mode Without Frame Synch
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9.3 DMA Controller

The TMS320C30 provides an on-chip Direct Memory Access (DMA) con-
troller. The purpose of the DMA controller is to reduce the need for the CPU
to perform input/output functions. The DMA controller can perform
input/output operations without interfering with the operation of the CPU.
Therefore, it is possible to interface the TMS320C30 to slow external memo-
ries and peripherals (A/D's, serial ports, etc.) without reducing the computa-
tional throughput of the CPU. The result is improved system performance and
decreased system cost.

A DMA transfer consists of two operations: a read from a memory location and
a write to a memory location. The DMA controller can read from and write to
any location in the TMS320C30 memory map. This includes all memory-
mapped peripherals. The operation of the DMA is controlled with the fol-
lowing set of memory-mapped registers:

DMA global control register
DMA source address register
DMA destination address register
© DMA transfer counter register

These registers, their memory-mapped addresses, and functions are shown in
Figure 9-29. Each of these DMA registers will be discussed in the succeeding
subsections.

Register Peripheral
Address
DMA GLOBAL CONTROL 808000h
RESERVED 808001h
RESERVED 808002h
RESERVED 808003h
DMA SOURCE ADDRESS 808004h
RESERVED 808005h
DMA DESTINATION ADDRESS 808006h
RESERVED 808007h
DMA TRANSFER COUNTER 808008h
RESERVED 808009h
RESERVED 80800Ah
RESERVED 80800Bh
RESERVED 80800Ch
RESERVED 80800Dh
RESERVED 80800Eh
RESERVED 80800Fh

Figure 9-29. Memory-Mapped Locations for a DMA Channel
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9.3.1 DMA Global Control Register

9-34

The global control register controls the state in which the DMA controller
operates. This register also indicates the status of the DMA, which changes
every cycle. Source and destination addresses can be incremented, decre-
mented, or synchronized using specified global control register bits. At system
reset, all bits in the DMA control register are set to 0. Table 9-7 lists the reg-
ister bits, names, and functions. Figure 9-30 shows the bit configuration of
the global control register.

Table 9-7. Global Control Register Bits

BIT NAME FUNCTION

0-1 START These bits control the state in which the DMA starts and stops.
The DMA may be stopped without any loss of data (see Table 9-8).

2-3 | STAT These bits indicate the status of the DMA. These status bits change
every cycle (see Table 9-9).

INCSRC | If INCSRC = 1, the source address is incremented after every read.

5 DECSRC | If DECSRC = 1, the source address is decremented after every read.
If INCSRC = DECSRC, the source address is not modified after a
read.

6 INCDST | If INCDST = 1, the destination address is incremented after every
write.

7 DECDST | If DECDST = 1, the destination address is decremented after every
read. If INCDST = DECDST, the destination address is not modi-
fied after a write.

8-9 | SYNCH | The SYNCH bits determine the timing synchronization between the
events initiating the source and the destination transfers. The in-
terpretation of the SYNCH bits is shown in Table 9-10.

10 TC The TC bit affects the operation of the transfer counter. If TC = 0,
transfers are not terminated when the transfer counter becomes
zero. If TC = 1, transfers are terminated when the transfer counter
becomes zero.

11 TCINT If TCINT = 1,the DMA interrupt is set when the transfer counter
makes a transition to zero. If TCINT = 0, the DMA interrupt is not
set when the transfer counter makes a transition to zero.

12 Reserved | Read as zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IXLIXXlXXlXXI XX IXXlXXIXXI XX [ XX l XX I XX IXLIXXJJXIXXI
15 14 1312 11 10 9 8 7 6 5 4 3.2 1 0

[xx [ xx [ xx [ xx [TCINT] T | syncH [ DECDST] INCDST [ DECSRC] INCSRC | STAT | START |

R/W R/W R/WR/W R/W R/W R/W R/W R R R/WR/W

NOTE: xx = Reserved bit, read as 0.
R = read, W = write.

Figure 9-30. DMA Global Control Register
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Table 9-8. START Bits and Operation of the DMA

START FUNCTION

00 DMA read or write cycles in progress will be completed, any data read will
be ignored. Any pending read or write will be cancelled. The DMA is reset
so that when started, a new transaction is begun; i.e., a read is performed.

01 If a read or write has begun, the read or write is completed before stopping,
i.e. in the middle or at the end of a DMA transfer. If a read or write has
not begun, no read or write is started.

10 If a DMA transfer has begun, the entire transfer is completed (including
both read and write operations) before stopping. If a transfer has not be-
gun, none is started.

11 DMA starts from reset or restarts from the previous state.

Table 9-9. STAT Bits and Status of the DMA

STAT FUNCTION

00 DMA is being held between DMA transfers (between a read and write).
This is the value at reset.

01 DMA is being held in the middle of a DMA transfer, i.e. between a read

and a write.
10 Reserved.
11 DMA busy; i.e., DMA is performing a read or write.

Table 9-10. SYNCH Bits and Synchronization of the DMA

SYNCH FUNCTION
00 No synchronization. Enabled interrupts are ignored.
01 Source synchronization. A read is performed when an enabled interrupt
occurs.
10 Destination synchronization. A write is performed when an enabled inter-

rupt occurs.

11 Source and destination synchronization. A read is performed when an en-
abled interrupt occurs. A write is then performed when the next enabled
interrupt occurs.
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9.3.2 Destination and Source Address Registers

The DMA destination and source address registers are 24-bit registers. These
registers are used when perfcrming the increment and decrement as specified
by control bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global
control register. The contents of these registers specify the destination and
source addresses. The registers are incremented or decremented at the end
of the corresponding memory access, i.e., source register for a read, destina-
tion register for a write. On system reset, 0 is written to these registers.

9.3.3 Transfer Counter Register

The transfer counter register is a 24-bit register, controlled by a 24-bit counter
that counts down. The counter decrements upon the completion of a DMA
memory write. In this way, it can be used to control the size of a block of data
transferred. The transfer counter register is set to O at system reset.

9.3.4 CPU/DMA Interrupt Enable Register
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The CPU/DMA interrupt enable register (IE) is a 32-bit register located in the
CPU register file. The CPU interrupt enable bits are in locations 10-0. The
DMA interrupt enable bits are in locations 26-16. A 1 in a CPU/DMA interrupt
enable register bit enables the corresponding interrupt. A O disables the cor-
responding interrupt. At reset, O is written to this register.

Table 9-11 list the bits, names, and functions of the CPU/DMA interrupt en-
able register. Figure 9-31 shows the |E register. The priority and decoding
scheme of CPU and DMA interrupts is identical. Note that when the DMA
receives an interrupt, this interrupt is acted upon based upon the SYNCH field
of the DMA control register. Note that an interrupt may affect the DMA, but
not the CPU and vice versa. Refer to Section 7.
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Table 9-11. CPU/DMA Interrupt Enable Register Bits

BIT NAME FUNCTION

0 EINTO Enable external interrupt O (CPU)

1 EINT1 Enable external interrupt 1 (CPU)

2 EINT2 Enable external interrupt 2 (CPU)

3 EINT3 Enable external interrupt 3 (CPU)

4 EXINTO Enable serial port O transmit interrupt (CPU)
5 ERINTO Enable serial port O receive interrupt (CPU)
6 EXINT1 Enable serial port 1 transmit interrupt (CPU)
7 ERINT1 Enable serial port 1 receive interrupt (CPU)
8 ETINTO Enable timer O interrupt (CPU)

9 ETINT1 Enable timer 1 interrupt (CPU)

10 EDINT Enable DMA controller interrupt (CPU)

11-15 | Reserved | Read as O
16 EINTO Enable external interrupt 0 (DMA)
17 EINT1 Enable external interrupt 1 (DMAY)
18 EINT2 Enable external interrupt 2 (DMA)
19 EINT3 Enable external interrupt 3 (DMA)
20 EXINTO Enable serial port O transmit interrupt (DMA)
21 ERINTO Enable serial port O receive interrupt (DMA)
22 EXINT1 Enable serial port 1 transmit interrupt (DMA)
23 ERINT1 Enable serial port 1 receive interrupt (DMA)
24 ETINTO Enable timer O interrupt (DMA)
25 ETINT1 Enable timer 1 interrupt (DMA)
26 EDINT Enable DMA controller interrupt (DMA)
27-32 | Reserved | Read as O

3130292827 26 25 24 23 22 21 20 19 18 17 16

xx | xx | xx{xx{xx|EDINTO|ETINT1 [ETINTO[ERINT1[EXINT1|ERINTO|EXINTO| EINT3 | EINT2 | EINT1 | EINTO
(DMA)| (DMA) | (DMA) | (DMA) | (DMA) | (DMA) | (DMA) | (DMA) | (DMA) | (DMA) | (DMA)

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

15614131211 10 9 8 7 6 5 4 3 2 1 0

xx | xx | xx | xx ] xx | EDINTO} ETINT1 | ETINTO[ERINT1{EXINT1 | ERINTO| EXINTO| EINT3 | EINT2 | EINT1 | EINTO
(cpu) | (cpu) | (cruy | (crpuy | (cpuy | (cruy | (cpu) | (cPu) | (cPu) | (cPU) | (CPU)

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  R/W
NOTE: xx =Reserved bit, read as 0.
R = read, W = write.

Figure 9-31. CPU/DMA Interrupt Enable Register
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9.3.5 DMA Memory Transfer Operation
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Each DMA memory transfer consists of two parts:

1) Read data from the address specified by the DMA source register.
2)  Write data that has been read to the address specified by the DMA des-
tination register.

A transfer is complete only when the read and write are complete. A transfer
may be stopped by setting the START bits to the desired value. When the
DMA is restarted (START = 1 1), it completes any pending transfer.

At the end of a DMA read, the source address is modified as specified by the
SRCINC and SRCDEC bits of the DMA global control register. At the end of
a DMA write, the destination address is modified as specified by the DSTINC
and DSTDEC bits of the DMA giobal control register. At the end of every
DMA write, the DMA transfer counter is decremented.

DMA on-chip reads and writes (reads and writes from on-chip memory and
peripherals) are single cycle. DMA off-chip reads are two cycles. The first
cycle is an internal setup with the external read beginning on the following
cycle. The external read cycle is identifical to a CPU read cycle. DMA off-chip
writes are identical to CPU off-chip writes.

Through the 24-bit source and destination registers, the DMA is capable of
accessing any memory-mapped location in the TMS320C30 memory map.
Figure 9-32 through Figure 9-34 show the number of cycles a DMA transfer
requires, depending upon whether the source and destination are on-chip
memory and peripherals, the external port, or the 1/0O port. 7 represents the
number of transfers to be performed. C, represents the number of wait states
for the source read. C,, represents the number of wait states for the destination
write. Each entry in the table represents the total cycles required to do the 7
transfers, assuming no pipeline conflicts.

Accompanying each table is a figure illustrating the timing of the DMA trans-
fer. |R| and |W]| represent single-cycle reads and writes, respectively. |R.R]
and |W.W| represent multicycle reads and writes. |Cr| and |Cw| show the
number of wait cycles for a read and write. |-| represents the cycle used as
an internal setup for DMA external reads.



Peripherals - DMA Controller

CYCLE 1 ]_[ 3]als]6]7]s | 9 ]10]11|12[13[14[15FJ1T18F
Source On-Chip | R | l R | o
Dest On-Chip [WI IWI |W| A
Source Primary Bus - .R.R.R| |-.R.R.R|] |-.R.R.R]|
o e B o |
Dest On-Chip oL IWL s s WL W
Source Expansion Bus - .R.R.R|{ |-.R.R.R| |-.R.R.R|
O O o B
Dest On-Chip COIWL s s W W
SOURCE DESTINATION ON-CHIP
On-Chip (1+1)T
Primary Bus (2+C+1)T
Expansion Bus (2+C+1)T

Figure 9-32. Timing and Number of Cycles for DMA Transfers When Destination

is On-Chip

CYCLE

Source On-Chip

Dest Primary bus

1]2[3}a]s5|6]7]8] 9L0|11J12[13|14t5|1tL|13|19

Rl |R| o |R| I IRI
|WWWW|WWWW|WWWW

| Cw | * | Cy 1l | Cwl
Source Primary Bus - .R.RARI N l—.R.R.R]
A B o | : : : G
Dest Primary Bus o |w W.w. W| L WLWL WL W
oo | Cy |l oo ] Cy
Source Expansion Bus —.R.R.RI I—.R.R.RI |- .R.R.R|
N B o | N | Cr | 0} Cp
Dest Primary Bus Co |w WoWW] (WWLW W] W.W. W W
Wl o o I Cy | ] Cw
SOURCE DESTINATION PRIMARY BUS
On—-Chip 1+(2+C)T
Primary Bus (2+C,+2+Cy )T
Expansion Bus (2+C,+2C)
+(2+Cy+tmax(0,CC , +1)(7-1)

Figure 9-33. DMA Timing When Destination is a Primary Bus
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CYCLE 1 ] 2|3[a]s]e|[7]8]9 lnﬂn|12|13|14|15|16|17|1a|19
Source On-Chip | R | - | R | F
Dest Expansion Bus |WW W WIWW W WIWW W WI
| Cw | @ 1 Cy | = 1 Cw i
Source Primary Bus - .R.R.R|] |-.R.R.R}| |J=-.R. R R |
H I o l : : | Cr | : : | C |
Dest Expansion Bus Do |w WWW O IWWWW] Wow. W w]
[ | Cw | ¢ ¢ JCw | @ ¢ |Cy |
Source Expansion Bus -.R.R.R| ¢ ¢ |=.R.R.R| Door
N N o | : : : : 1 Cr |
Dest Expansion Bus IW W W WI IW W W. WI
S B OV - B OV |
SQURCE DESTINATION EXPANSION BUS
On-Chip 1+(2+C)T
Primary Bus (2+C+2+Cy )
+(2+Cyy+max(0,C~ Cy+1))(7-1)
Expansion Bus (2+C;+2+C W)T

Figure 9-34. DMA Timing When Destination is an Expansion Bus
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Table 9-12 shows the maximum DMA transfer-rates assuming no wait states
(C;=Cw= 0). Table 9-13 shows the maximum DMA transfer-rates assuming
one wait state for the read (C,=1) and no wait states for the write (C\,=0).
Table 9-14 shows the maximum DMA transfer-rates assuming one wait state
for the read (C, =1) and one wait state for the write (Cyy, ).

In each table, the complete transfer is considered (i.e., the time to do the read
and the write). Since one bus access is required for the read and another for
the write, bus transfer-rates will be twice the transfer-rate. It is also assumed
that no conflicts with the CPU exist.

Table 9-12. Maximum DMA Transfer Rates When C, = Cy, = 0

DESTINATION
SOURCE
INTERNAL PRIMARY EXPANSION
INTERNAL 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec
PRIMARY 22.2 Mbytes/sec 16.7 Mbytes/sec 22.2 Mbytes/sec
EXPANSION 22.2 Mbytes/sec 22.2 Mbytes/sec 16.7 Mbytes/sec

Table 9-13. Maximum DMA Transfer Rates When C, =1, Cy, = 0

DESTINATION
SOURCE
INTERNAL PRIMARY EXPANSION
INTERNAL 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec
PRIMARY 16.7 Mbytes/sec 13.3 Mbytes/sec 16.7 Mbytes/sec
EXPANSION 16.7 Mbytes/sec 16.7 Mbytes/sec 13.3 Mbytes/sec

Table 9-14. Maximum DMA Transfer Rates When C, =1, Cy, = 1

DESTINATION
SOURCE
INTERNAL PRIMARY EXPANSION
INTERNAL 33.3 Mbytes/sec 22.2 Mbytes/sec 22.2 Mbytes/sec
PRIMARY 16.7 Mbytes/sec 11.1 Mbytes/sec 16.7 Mbytes/sec
EXPANSION 16.7 Mbytes/sec 16.7 Mbytes/sec 11.1 Mbytes/sec
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9.3.6 Synchronization of DMA Channels
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A DMA channel may be synchronized through the use of interrupts. Refer to
Table 9-10 for the relationship between the SYNCH bits of the DMA global
control register and the synchronization performed. This section describes the
following four synchronization mechanisms:

No synchronization (SYNCH = 0 0)

Source synchronization (SYNCH = 0 1)

Destination synchronization (SYNCH =1 0)

Source and destination synchronization (SYNCH.= 1 1)
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No Synchronization

When SYNCH = 0 0, no synchronization is performed. The DMA will perform reads and
writes whenever there are no conflicts. All interrupts are ignored, and therefore can be
considered to be globally disabled. However, no bits in the DMA interrupt enable register
are changed. Figure 9-35 shows the synchronization mechanism when SYNCH = 0 0.

| DISABLE DMA INTERRUPTS GLOBALLY |

L]

| DMA CHANNEL PERFORMS A READ |

v

| DMA CHANNEL PERFORMS A WRITE |

v

[ GoToSsTART |

Figure 9-35. No DMA Synchronization
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9-44

Source Synchronization

When SYNCH = 0 1, the DMA is synchronized to the source (see Figure 9-36). A read
will not be performed until an interrupt is received by the DMA. Then, all DMA interrupts
are disabled globally. However, no bits in the DMA interrupt enable register are changed.

| IDLE UNTIL ENABLED INTERRUPT IS RECEIVED |

Y

|  DISABLE DMA INTERRUPTS GLOBALLY |

¥

| DMA CHANNEL PERFORMS A READ |

¥

| DMA CHANNEL PERFORMS A WRITE |

¥

| ENABLE DMA INTERRUPTS GLOBALLY |

v

[TGoTo sTART |

Figure 9-36. DMA Source Synchronization
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Destination Synchronization

When SYNCH = 1 0, the DMA is synchronized to the destination. First, all interrupts are
ignored until the read is complete. Though the DMA interrupts may be considered to be
globally disabled, no bits in the DMA interrupt enable register are changed. A write will
not be performed until an interrupt is received by the DMA. Figure 9-37 shows the syn-
chronization mechanism when SYNCH =1 0.

I DMA INTERRUPTS ARE DISABLED GLOBALLY ]

v

{ DMA CHANNEL PERFORMS A READ ]

v

I DMA INTERRUPTS ARE ENABLED GLOBALLY |

y

I IDLE UNTIL ENABLED INTERRUPT IS RECEIVED |

v

{ DISABLE DMA INTERRUPTS GLOBALLY |

y

| DMA CHANNEL PERFORMS A WRITE ]

| GOTOSTART |

Figure 9-37. DMA Destination Synchronization
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Source and Destination Synchronization

When SYNCH = 1 1, all interrupts are ignored, and therefore can be considered to be
globally disabled. However, no bits in the DMA interrupt enable register are changed. A
read is performed when an interrupt is received. A write is performed on the following
interrupt. Source and destination synchronization when SYNCH = 1 1 is shown in Figure

9-38.
| IDLE UNTIL ENABLED INTERRUPT IS RECEIVED |
| DISABLE DMA IN%RUPTS GLOBALLY |
| DMA CHANNEL P!.RFORMS A READ |
[ ENABLE DMA |NTE¥(RUPTS GLOBALLY |
| IDLE UNTIL ENABLED 1!11:RRUPT IS RECEIVED |
| DISABLE DMA INTEERUPTS GLOBALLY |
| DMA CHANNEIT!RFORMS A WRITE |
[ ENABLE DMA II\FE*RRUPT GLOBALLY |

| Go TOJ;TAHT |
H Figure 9-38. DMA Source and Destination Synchronization
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Section 10

Pipeline Operation

TMS320C30 operation is controlled by five major functional units: fetch, de-
code, read, execute, and DMA. To provide for maximum processor through-
put, these units can perform in parallel, with each unit operating on a different
instruction. The overlapping of the fetch, decode, read, and execute oper-
ations of different instructions is called pipelining. The pipelining of these
operations results in the high performance of the TMS320C30. The ability of
the DMA to move data within the processor memory space results in an even
greater utilization of the CPU with fewer interruptions of the pipeline, thus
yielding greater performance.

Major topics discussed in this section are as follows:

e Pipeline Structure (Section 10.1 on page 10-2)

@ Pipeline Conflicts (Section 10.2 on page 10-4)
- Branch conflicts
- Register conflicts
- Memory conflicts

Resolving Memory Conflicts (Section 10.3 on page 10-14)

o Clocking of Memory Accesses (Section 10.4 on page 10-16)
- Program fetches
- Data loads and stores
- DMA accesses
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10.1 Pipeline Structure
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The five major units of the TMS320C30 pipeline structure and their function
are as follows:

Fetch Unit (F) Fetches the instruction words from memory and
updates the program counter (PC).

Decode Unit (D) Decodes the instruction word and performs ad-
dress generation. Any modification of the auxiliary
registers and the stack pointer is controlled by this

unit.
Read Unit (R) If required, reads the operands from memory.
Execute Unit (E) If required, reads the operands from the register

file, performs the necessary operation, and if
needed writes results to the register file. If re-
quired, results of previous operations are written
to memory.

DMA Channel (DMA) Reads and writes memory.

The basic instruction has four levels: fetch, decode, read, and execute. Figure
10-1 illustrates these four tevels of the pipeline structure. The levels are in-
dexed according to instruction and execution cycle. Also indicated is a place
in the pipeline where all four units operate in parallel; the perfect overlap oc-
curs at cycle (m). Those levels about to be executed are at m+1, and those
just executed are at m-1. The TMS320C30 pipeline control allows for an ex-
tremely high-speed execution rate by aliowing an effective rate of one exe-
cution per cycle. It also manages pipeline conflicts in a way that makes them
transparent to the user. The user does not need to take any special precautions
to guarantee correct operation.

CYCLE
INSTRUCTION . . . Im3lm2lm1 ]l m Im+1im+2l
I Il 1 ol r 1 e |
J l' et ol R 1T € |
K Il 1 ol 1 e |
J I $ Il ol r 1 e |
. PERFECT
OVERLAP

Figure 10-1. TMS320C30 Pipeline Structure
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Priorities have been assigned to each of the functional units. The priorities
from highest to lowest are:

-] Execute (highest)
Read

Decode

Fetch

DMA (lowest).

When processing of an instruction is ready to pass to the next higher pipeline
level, but that level is not ready to accept a new input, a pipeline conflict oc-
curs. In this case, the lower priority unit waits until the higher priority unit
completes its currently executing function.

Despite the DMA controllers low priority, conflicts with the CPU can be min-
imized or even eliminated by suitable data structuring since the DMA con-
troller has its own data and address buses.
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10.2 Pipeline Conflicts

The pipeline conflicts of the TMS320C30 can be grouped into the following
main categories:

Branch Conflicts Involve most of those instructions or operations which
read and/or modify the PC.

Register Conflicts Involve delays that can occur when reading or writing
registers used for address generation.

Memory Conflicts Occur when the internal units of the TMS320C30
compete for memory resources.

Each of these three types is discussed in the following sections. Examples are
included. Note in these examples, when data is refetched or an operation is
repeated, the symbol representing the stage of the pipeline is appended with
a number. For example, if a fetch is performed again, the initial fetch is labeled
F1 and the refetch is labeled F2. When an access is detained multiple cycles
due to a 'not ready,’ the symbols RDY and RDY are used to indicate not ready
and ready, respectively.

10.2.1 Branch Conflicts
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The first class of pipeline conflicts is that which occurs with standard (non-
delayed) branches, i.e., BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS,
RETlcond, RETScond, interrupts, and reset. Conflicts arise with these in-
structions and operations since during their execution, the pipeline is used
only for the completion of the operation; other information fetched into the
pipeline is discarded or refetched, or the pipeline is inactive. This is referred
to as flushing the pipeline. Flushing the pipeline is necessary in these cases
to guarantee that portions of succeeding instructions do not inadvertantly get
partially executed. TRAPcond and CALLcond are classified somewhat differ-
ently from the other types of branches and are considered later.

Example 10-1 shows the code and pipeline operation for a standard branch.
Note that one dummy fetch is performed (F1), and then after the branch ad-
dress is available, a new fetch (F2) is performed. This dummy fetch will affect
the cache.
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Example 10-1. Standard Branch

BR THREE ; Unconditional branch
MPYF ; Not executed
ADDF ; Not executed
SUBF ; Not executed
AND ; Not executed
THREE OR ; Fetched after BR is fetched
STI

PIPELINE OPERATION

THREE-PC
BR THREE | F | D | R | E |
OR | F1 | (nop) | (nop) | F2 | D ..
STI | F ...

RPTS and RPTB both flush the pipeline, thus allowing for the RS, RE, and
RC registers to be loaded at the proper time relative to the flow of the pipeline.
If these registers are loaded without the use of RPTS or RPTB, no flushing of
the pipeline occurs. [f none of the repeat modes are being used, RS, RE, and
RC may be used as general-purpose 32-bit registers without any pipeline
conflicts occurring. In cases such as the nesting of RPTB due to nested in-
terrupts, it may be necessary to load and store these registers directly while
using the repeat modes. Since up to four instructions can be fetched before ___
entering the repeat mode, loads should be followed by a branch to flush the J
pipeline. If the RC is changing when an instruction is loading it, the direct load }
takes priority over the modification made by the repeat mode logic.

Delayed branches are implemented to guarantee the fetching of the next three
instructions. The delayed branches include BRD, BcondD, and DBcondD.
Example 10-2 shows the code and pipeline operation for a delayed branch.
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Example 10-2. Delayed Branch

BRD THREE Unconditional delayed branch

MPYF ; Executed
ADDF ; Executed
SUBF ; Executed
AND ; Not executed

THREE MPYF

Fetched after SUBF fetched

~

.

PIPELINE OPERATION

THREE—PC
BRD THREE | F | D | R | E |
MPYF | F | D | R | E |
ADDF | F | D | R | E |
SUBF | F I D | R |
MPYF | F | D |

10.2.2 Register Conflicts
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Register conflicts involve the reading or writing of registers used for address-
ing purposes. These conflicts occur when the pertinent register is not ready
to be used. The registers comprise the following three functional groups:

Group 1 Auxiliary registers (AR0-AR7), index registers (IR0, IR1), and
block size register (BK)

Group 2 Data page pointer (DP)
Group 3 System stack pointer (SP)

If an instruction writes to one of these three groups, the use of any register
within that particular group by the decode unit is delayed until the write is
complete, i.e. instruction execution is completed. In Example 10-3, an auxil-
iary register is loaded, and a different auxiliary register is used on the next in-
struction. Since the decode stage needs the result of the write to the auxiliary
register, the decode of this second instruction is delayed two cycles. Every
time the decode is delayed, a refetch of the program word is performed; i.e.,
the first fetch of ADDF is at F1, followed by F2 and F3 (the final fetch). Since
these are actual refetches, they can cause conflicts with the DMA controller
and cache hits and misses.
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Example 10-3. Write to an AR Followed by an AR for Address Generation

LDI 7,AR1 ; 7 = AR1

NEXT MPYF *AR2,R0O ; Decode delayed 2 cycles
ADDF
FLOAT

PIPELINE OPERATION

7AR1
IpI 7,AR1 | F | D | R | E |
MPYF *AR2,RO | F | b1 | b2 | D3 | R |.
ADDF | F1 | F2 | F3 | D |.
FLOAT | F .

The case for reads of these groups is similar to the case for writes. If an in-
struction must read a member of one of these groups, the use of that particular
group by the decode for the following instruction is delayed until the read is
complete. The registers are read at the start of the execute cycle and therefore
require only a one cycle delay of the following decode. For four registers (IR0,
IR1, BK, or DP) no delay is incurred. In all other cases, including the SP, the
delay occurs. In Example 10-4, two auxiliary registers are added together with
the result going to an extended-precision register. The next instruction uses
a different auxiliary register as an address register.

Example 10-4. A Read of ARs Followed by ARs for Address Generation

ADDI ARO,AR1,R1 ; ARO + ARl - R1
NEXT MPYF *++AR2,R0O ; Decode delayed 1 cycle

ADDF
FLOAT
PIPELINE OPERATION
ARO+AR1—R1

ADDI | F | D | R | E |
MPYF* ++AR2,R0 | F | D1 | D2 | R | E |
ADDF | 1 | F2 | D | R |
FLOAT | F | D .

Note that while the DBR (decrement and branch) instruction does not use the
auxiliary registers for addressing, its use of them as loop counters is treated
as if it did. Therefore, the operation shown in the two previous examples can
also occur for this instruction.

10-7
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10.2.3 Memory Conflicts

10-8

Possible memory conflicts occur when the memory bandwidth of a physical
memory space is exceeded. For example, RAM blocks 0 and 1 and the ROM
block can support only two accesses every cycle. The external interface can
support only one access per cycle. Some conditions under which memory
conflicts can be easily avoided are discussed in Section 10.3.

Memory pipeline conflicts consist of the following four types:

Program Wait A program fetch is prevented from begin-
ning.

Program Fetch Incomplete A program fetch has begun, but is not yet
complete.

Execute Only An instruction sequence requires three

CPU-data accesses in a single cycle.

Hold Everything A primary or expansion bus operation must
complete before another one can proceed.

These four types of memory conflicts are discussed in the succeeding para-
graphs and examples provided.

Program Wait

Two conditions can prevent the program fetch from beginning:

(] The start of a CPU-data access when:
- Two CPU-data accesses are made to an internal RAM or ROM
block, and a program fetch from the same block is necessary.
—  One of the external ports is starting a CPU-data access, and a
program fetch from the same port is necessary.

(] A multicycle CPU-data access or DMA-data access over the external bus
is needed.
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An example of program wait until a CPU-data access completes is illustrated
in Example 10-5. In this case, *ARO and *AR1 are both pointing to data in
RAM block 0, and the MPYF instruction will be fetched from RAM block O.
This results in the conflict shown in Example 10-5. Since no more than two
accesses can be made to RAM block 0 in a single cycle, the program fetch
cannot begin, and must wait until the CPU-data accesses are complete.

Example 10-5. Program Wait Until CPU-Data Access Completes
ADDF'3 *ARO, *AR1,RO

FIX
MPYF
ADDF3
NEGB
PIPELINE OPERATION
*ARO MEMORY READ
‘AR1MEMPRYREAD
ADDF3 *ARO,*AR1,RO0 | F | D | R | E |
FIX | F I D] R | E |
(wait)
MPYF | F | F | D|R | E |
ADDF | F I D | R |
NEGB | F | D |

Example 10-6 shows an example of a program wait due to a multicycle data-

data access or a multicycle DMA access. The ADDF, MPYF, and SUBF are

fetched from some portion in memory other than the external port the DMA

requires. The DMA begins a multicycle access. The program fetch corre-
sponding to the CALL is made to the same external port the DMA is using.

Even though the DMA has the lowest priority, multi-cycle access cannot be
aborted. The program fetch must therefore wait until the DMA access com-

pletes.

Example 10-6. Program Wait Due to Multicycle Access

ADDF | F | D | R | E |

MPYF | F | D | R | E |

SUBF | F | D | R | E |
(wait)

CALL | F | F | D |

| 2 cycle DMA access |

10-9
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Program Fetch Incomplete

A program fetch incomplete occurs when a program fetch takes more than one
cycle to complete due to wait states. In Example 10-7, the MPYF and ADDF
are fetched from memory that supports single-cycle accesses. The SUBF is
fetched from memory requiring one wait state.

Example 10-7. Multicycle Program Memory Fetches

10-10

MPYF | F | D | R | E |
ADDF | F | D | R | E |
RDY RDY
SUBF | F | F | D | R | E |
ADDI | F | D | R |

Execute Only

The Execute Only type of memory pipeline conflicts occurs when a sequence
of instructions requires three CPU-data accesses in a single cycle or when
performing an interlocked load. The three cases where this occurs are:

® An instruction that performs a store, followed by an instruction that does
two memory reads.

{ An instruction that performs two stores, followed by an instruction that
performs at least one memory read.

® An interlocked load (LDIl or LDFI) instruction is performed, and XF1 =
1.
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The first case is shown in Example 10-8. Since this sequence requires three
data memory accesses and only two are available, only the execute phase of
the pipeline is allowed to proceed. The dual reads required by the LDF || LDF
will be delayed one cycle. Note that a refetch of the next instruction can oc-
cur.

Example 10-8. Single Store FoHowed by Two Reads

STF RO, *AR1 ; RO - *AR1
LDF *AR2,R1 ; *AR2 - Rl in parallel with
Il LDF *AR3,R2 ; *AR3 - R2

PIPELINE OPERATION

RO—>"AR1
STFRO,*AR1 | F | D | R | E |
*AR2—R1
*AR3—*R2
LDF| | LDF | F | D | Rl | R2Z | E |
| F | D1 | D2 | R |
| F1 | F2 | D |

Example 10-9 shows a parallel store followed by a single load or read. Since
the two parallel stores are required, the next CPU-data memory read must wait
a cycle before beginning. One program memory refetch may occur.

Example 10-9. Parallel Store Followed by Single Read

STF RO, *ARO ; RO - *ARO in parallel with
I STF R2,*AR1 ; R2 - *aAR1

ADDF @SUM,R1 ; R1 + @SuM - R1

JACK

ASH

PIPELINE OPERATION

RO-*"ARO
R2-"AR1
STF RO, *AR1
|ISTF R2,*aR1 | F | D | R | E |
(wait) @SuM
ADDF @SUM,R1 | F | D | R | R | E |
IACK | F | Dt | D2 | R |

ASH | F1 | F2 | D |.

10-11
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The final case involves an interlocked load (LDII or LDFI) instruction and XF1
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the
read can complete, they may need to extend the read cycle, as shown in Ex-
ample 10-10. Note that a program refetch may occur.

Example 10-10. Interiocked Load

NOT | F | D { R | E |

XF1=1 XF1=0
LDII | F | D | R | R | E |
ADDI | F | D1 | D2 | R .
CMPI | FA | F2 | D .

Hold Everything

The three types of Hold Everything memory pipeline conflicts are:

® A CPU-data load or store cannot be performed because an external port
is busy.

L] An external load that takes more than one cycle.

[ ] Conditional calls and traps.

The first type of Hold Everything conflict occurs when one of the external
ports is busy due to an access that has started but is not complete. In Example
10-11, the first store is a two-cycle store. The CPU writes the data to an ex-
ternal port. The port control then takes two cycles to complete the data-data
write. The LDF is a read over the same external port. Since the store is not
complete, the LDF will continue to be attempted until the port is available.
For this case, the first dummy fetch occurs at the same time as D2.

Example 10-11. Busy External Port

10-12

STF RO,@DMAl
LDF @DMA2,RO

PIPELINE OPERATION

| 2-cycle DMA access |

STF | F | D | R | E |
LDF | F | D | nop | R | E |
| F | D1 | D2 | R |
| FA | F2 | D .
I F
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The second type of Hold Everything conflict involves multicycle data reads.
The read has begun and continues until completed. In Example 10-12, the
LLDF is performed from an external memory that requires several cycles to
complete.

Example 10-12. Multicycle Data Reads

} F | b { R | E |
| 2-cycle read |
LDF @DMA,RO | F | D | R | R | E |
| F | D1 | D2 | R |...
| F | nop | D ...

| F1 | F2 |.

The final type of Hold Everything conflict deals with conditional calls and
traps, which are different from the other branch instructions. Whereas the
other branch instructions are conditional loads, the conditional calls and traps
are conditional stores, which take one cycle more than a standard branch (see
Example 10-13).

Example 10-13. Conditional Calls and Traps

(store)

CALLcond | F | D | R | E | E |
| F1 | (nop) | (nop) | F2 | F3 | D |

10-13
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10.3 Resolving Memory Conflicts

10-14

If program fetches and data accesses are performed in such a manner that the
resources being used cannot provide the necessary bandwidth, the program
fetch is delayed until the data access is complete. Certain configurations of
program fetch and data accesses vyield conditions under which the
TMS320C30 can achieve maximum throughput. Table 10-1 shows how many
accesses can be performed from the different memory spaces when it is nec-
essary to do a program fetch and a single data access, and still achieve maxi-
mum performance (one cycle). There are four cases that achieve one cycle
maximization (see Table 10-1). Table 10-2 shows how many accesses can
be performed from the different memory spaces when it is necessary to do a
program fetch and two data accesses, still achieving maximum performance
(one cycle). There are six cases that achieve this maximization (see Table
10-2).

Table 10-1. One Program Fetch and One-Data Access for Maximum
Performance

CASE # PRIMARY BUS ACCESSES FROM EXPANSION BUS
ACCESSES DUAL-ACCESS OR PERIPHERAL
INTERNAL MEMORY ACCESSES

1 1 1 -

2 1 - 1

3 - 2 from any -
combination
of internal memory

4 - 1 1
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Table 10-2. One Program Fetch and Two Data Accesses for
Maximum Performance

CASE #

PRIMARY BUS
ACCESSES

ACCESSES FROM
DUAL-ACCESS
INTERNAL MEMORY

EXPANSION OR
PERIPHERAL BUS
ACCESSES

2 from any
combination
of internal memory

1 Program

1 Data

1 Data

1 Data

1 Data

1 Program

2 from same internal
memory block and
1 from a different

internal memory
block

3 from different
internal memory
blocks

2 from any
combination

of internal memory

10-15
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10.4 Clocking Of Memory Accesses

Internal clock phases (H1 and H3) and their relationship to memory accesses
are discussed in this section to show how the TMS320C30 handles multiple
memory accesses. Whereas the previous section discussed the interaction
between sequences of instructions, this section discusses the flow of data on
an individual instruction basis.

Each major clock period of 60 ns is composed of two minor clock periods of
30 ns, labeled as H3 and H1.

l‘- Major Clock Period -

H1

H3

The precise operation of memory reads and writes can be defined, based upon
these minor clock periods. The types of memory operations which can occur
are program fetches, data loads and stores, and DMA accesses.

10.4.1 Program Fetches

Internal program fetches are always performed during H3 unless a single data
store must occur at the same time, due to another instruction in the pipeline.
In this case, the program fetch occurs during H1 and the data store during
H3.

External program fetches always start at the beginning of H3 with the address
being presented on the external bus. At the end of H1, they are completed
with the latching of the instruction word.

10.4.2 Data Loads and Stores

10-16

Four types of instructions perform loads, memory reads, and stores: two-ope-
rand instructions, three-operand instructions, multiplier/ALU operation with
store instructions, and parallel multiply and add instructions. See Section 6 for
detailed information on addressing modes.

Two-Operand Instruction Memory Accesses

Two-operand instructions include all those instructions with bits 31-29 being
000 or 010 (see Figure 10-2). In the case of a data read, bits 15-0 represent
the src operand. Internal data reads are always performed during H1. External
data reads always start at the beginning of H3 with the address being pre-
sented on the external bus, and complete with the latching of the instruction
word at the end of H1.
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31

In the case of a data store, bits 15-0 represent the dst operand. Internal data
stores are performed during H3. External data stores always start at the be-
ginning of H3 with the address and data being presented on the external bus.

24 23 1615 87 0
T T

L
0 X0

Operation G dst(src) src(dst)

31

Figure 10-2. Two-Operand Instruction Word

Three-Operand Instruction Memory Reads

Three-operand instructions include all instructions with bits 31-29 being 001
(see Figure 10-3). The source operands, sr¢7 and src2, come from either reg-
isters or memory. When one or more of the source operands are from memory,
these instructions are always memory reads.

If only one of the source operands is from memory (either sre7 or src2) and
is located in internal memory, the data is read during H1. If the single memory
source operand is in external memory, the read starts at the beginning of H3,
with the address being presented on the external bus, and completes with the
latching of the data word at the end of H1.

If both source operands are to be fetched from memory, then several cases
occur. If both operands are located in internal memory, the src7 is performed
during H3 and src2 during H1, thus completing two memory reads in a single
cycle.

If src7 is in internal memory and src2 in external memory, the src2 access is
begun at the start of H3 and latched at the end of H1. At the same time, the
srcT access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

If src? is in external memory and src2 in internal memory, two cycles are nec-
essary to complete the two reads. In the first cycle, the internal src2 access
is performed. The sre7 is also performed, but not latched until the next H3.

If sre7 and src2 are both from external memory, two cycles are required to
complete the two reads. In the first cycle, the src? access is performed and
loaded on the next H3; in the second cycle, the src2 access is performed and
loaded on that cycle’s H1.

24 23 1615 87 0

LI
001

T T T T T T T T T T T 1 T T T T T

1]
Operation T dst srcl src2

Figure 10-3. Three-Operand Instruction Word

10-17
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Operations with Parallel Stores

The next class of instructions includes all instructions that have a store, in
parallel with another instruction. Bits 31 and 30 for these instruction are equal
to11.

For those operations that perform a multiply or ALU operation in parallel with
a store, the instruction word format is shown in Figure 10-4. If the store op-
eration to dst2 is external or internal, it is performed during H3.

If the memory read operation is external, it is started at the beginning of H3
and latched at the end of H1. If the memory read operation is internal, it is
performed during H1. Note that memory reads are performed by the CPU
during the read (R) phase of the pipeline, and stores during the execute (E)
phase.

2423 1615 87 0
T 1 L T T L 1 1 T 1 T T 1 V Ll T 1 Ll 1 T

T T ¥ 1
Operation dst1 srct src3 dst2 src2

31

Figure 10-4. A Multiply or CPU Operation with a Parallel Store

The instruction word format for those instructions that have parallel stores to
memory is shown in Figure 10-5. If both destination operands, dst7 and
dst2, are located in internal memory, dst7 is stored during H3 and d'st2 during
H1, thus completing two memory stores in a single cycle.

If dst7 is in external memory and dst2 in internal memory, the dst7 store is
begun at the start of H3. The dst2 store to internal memory is performed
during H1. Again, two memory stores are completed in a single cycle.

If dst7 is in internal memory and dst2 in external memory, two cycles are ne-
cessary to complete the dst2 store. In the first cycle, the internal dst7 store is
performed during H3. During the next cycle, the dst2 store is performed be-
ginning in H3.

If dst7 and dst2 are both from external memory, two cycles are necessary to
complete the dst2 store. In the first cycle, the dst7 access is performed; in the
second cycle, the dst2 access is performed.

11

2423 1615 87 0
Ll

T T i L 1 1 1 T L Ll 1] 1 1 Ll

L T 1
ST||ST src2 |0 0 O srcl dst1 dst2

10-18

Figure 10-5. Two Parallel Stores
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Parallel Multiplies and Adds

The considerations of memory addressing for parallel multiplies and adds is
similar to that for three-operand instructions. The parallel multiplies and adds
include all instructions with bits 31-30 equal to 10 (see Figure 10-6).

For these operations, src3 and src4 are both located in memory. If both op-
erands are located in internal memory, src3 is performed during H3 and src4
during H1, thus completing two memory reads in a single cycle.

If sre3 is in internal memory and src4 in external memory, the src4 access is
begun at the start of H3 and latched at the end of H1. At the same time, the
src3 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

If src3 is in external memory and src4 in internal memory, two cycles are nec-
essary to complete the two reads. In the first cycle, the internal src4 access
is performed. During the H3 of the next cycle, the src3 access is performed.

If sre3 and src4 are both from external memory, two cycles are necessary to
complete the two reads. In the first cycle, the sre3 access is performed; in the
second cycle, the src4 access is performed.

¥

1]
Operation P Id1]d2] srcil src2 src3 srcd

2423 1615 87 0
T 1

1 T T T T { 1 T 1 T 1 T t T T 1 T

Figure 10-6. Parallel Multiplies and Adds
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Section 11

Assembly Language Instructions

The TMS320C30 assembly language instruction set supports numeric-
intensive signal processing and general-purpose applications. The instructions
are organized into major groups consisting of load and store, two- or three-
operand arithmetic/logical, parailel, program control, and interlocked oper-
ations instructions. The addressing modes used with the instructions are
described in Section 6.

An additional feature of the TMS320C30 instruction set is the capability of
using one of 19 condition codes with any of the 10 conditional instructions,
such as LDFcond. This section defines the condition codes and flags.

The assembler allows optional syntax forms to simplify the assembly language
for special-case instructions. These optional forms are listed and explained.

Each of the individual instructions is described and listed in alphabetical order.
An illustration showing an example instruction (see pages 11-15 through
11-17) is provided to show the special format used and explain its content.

Major topics discussed in this section are as follows:

e Instruction Set (Section 11.1 on page 11-2)
- Load and store instructions
—  Two-operand arithmetic/logical instructions
—  Three-operand arithmetic/logical instructions
- Program control instructions
- Interlocked operations instructions
- Parallel operations instructions

Condition Codes and Flags (Section 11.2 on page 11-8)

o Individual Instructions (Section 11.3 on page 11-11)
- Symbols and abbreviations used in instructions
- Optional assembler syntaxes
- Individual instruction descriptions alphabetized and including:

Syntax
Operation
Operands
Encoding
Description
Cycles
Status bits
Mode bit
Example(s)
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11.1 Instruction Set

The TMS320C30 instruction set is exceptionally well suited to digital signal
processing and other numeric-intensive applications. All instructions are a
single machine word long, and most instructions take a single cycle to exe-
cute. In addition to multiply and accumulate instructions, the TMS320C30
possesses a full complement of general-purpose instructions.

The instruction set contains 114 instructions organized into the following
functional groups:

Load and store

Two-operand arithmetic/logical
Three-operand arithmetic/logical
Program control

Interlocked operations

Parallel operations.

Each of these groups is discussed in the succeeding subsections.

11.1.1 Load and Store Instructions

The TMS320C30 supports 12 load and store instructions (see Table 11-1).
These instructions can:

L ] Load a word from memory into a register,
] Store a word from a register into memory, or
® Manipulate data on the system stack.

Two of these instructions can load data conditionally. This is useful for locat-
ing the maximum or minimum value in a data set. See Section 11.2 for detailed
information on condition codes.

Table 11-1. Load and Store Instructions

INSTRUCTION : DESCRIPTION INSTRUCTION DESCRIPTION

LDE Load floating-point exponent POP Pop integer from stack

LDF Load floating-point value POPF Pop floating-point value from
stack

LDFcond Load floating-point value PUSH Push integer on stack

conditionally

LDl Load integer PUSHF Push floating-point value on
stack

LDlicond Load integer conditionally STF Store floating-point value

LDM Load floating-point mantissa STI Store integer
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11.1.2 Two-Operand Instructions

The TMS320C30 supports a complete set of two-operand arithmetic and
logical instructions. The two operands are the source and destination. The
source operand may be a memory word, a register, or a part of the instruction
word. The destination operand is always a register.

These instructions provide integer, floating-point, or logical operations, and
multiprecision arithmetic. Table 11-2 lists these instructions.

Table 11-2. Two-Operand Instructions

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION
ABSF Absolute value of a floating- NORM Normalize floating-point value
point number
ABSI Absolute value of an integer NOT Bitwise logical-complement
ADDC 1| Add integers with carry OR t] Bitwise logical-OR
ADDF t] Add floating-point values RND Round floating-point value
ADDI t| Add integers ROL Rotate left
AND t| Bitwise logical-AND ROLC Rotate left through carry
ANDN t| Bitwise logical-AND with ROR Rotate right
complement
ASH t| Arithmetic shift RORC Rotate right through carry
CMPF t| Compare floating-point values SUBB t] Subtract integers with borrow
CMPI t| Compare integers SUBC Subtract integers conditionally
FIX _Convert floating-point value to SUBF Subtract floating-paoint values
integer
FLOAT Convert integer to floating-point SUBI Subtract integer
value
LSH t] Logical shift SUBRB Subtract reverse integer with
borrow
MPYF 11 Multiply floating-point values SUBRF Subtract reverse floating-point
value
MPYI T} Multiply integers SUBRI Subtract reverse integer
NEGB Negate integer with borrow TSTB t| Test bit fields
NEGF Negate floating-point value XOR t| Bitwise exclusive-OR
NEG! Negate integer

t Two- and three-operand versions
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11.1.3 Three-Operand Instructions

Most instructions have only two operands; however, some arithmetic and
logical instructions have three-operand versions. Three-operand instructions
allow the TMS320C30 to read two operands from memory or the CPU register
file in a single cycle and store the results in a register. The following differ-
entiates the two- and three-operand instructions:

® Two-operand instructions have a single source operand (or shift count)
and a destination operand.

L ] Three-operand instructions may have two source operands (or one
source operand and a count operand) and a destination operand. A
source operand may be a memory word or a register. The destination
of a three-operand instruction is always a register.

Table 11-3 lists the instructions that have three-operand versions. Note that
the ‘3’ in the mnemonic can be omitted from three-operand instructions (see
Section 11.3.2).

Table 11-3. Three-Operand Instructions

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION
ADDC3 Add with carry MPYF3 Multiply floating-point values
ADDF3 Add floating-point values MPYI3 Multiply integers
ADDI3 Add integers OR3 Bitwise logical-OR
AND3 Bitwise logical-AND SUBB3 Subtract integers with borrow
ANDN3 Bitwise logical-AND with SUBF3 Subtract floating-point values

complement
ASH3 Arithmetic shift SuUBI3 Subtract integers
CMPF3 Compare floating-point values TSTB3 Test bit fields
CMPI3 Compare integers XOR3 Bitwise exclusive-OR
LSH3 Logical shift

11.1.4 Program Control Instructions

The program-control instruction group consists of all of those instructions
which affect program flow. The repeat mode allows repetition of a block of
code (RPTB) or of a single line of code (RPTS). Both standard and delayed
(single-cycle) branching are supported. Several of the program control in-
structions are capable of conditional operations (see Section 11.2 for detailed
information on condition codes). Table 11-4 lists the program control in-
structions.
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Table 11-4. Program Control Instructions

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION
Becond Branch conditionally (standard) IDLE Idle until interrupt
BcondD Branch conditionally (delayed) NOP No operation
BR Branch unconditionally RETI cond Return from interrupt
(standard) conditionally

BRD Branch unconditionally RETS cond Return from subroutine
(delayed) conditionally

CALL Call subroutine RPTB Repeat block of instructions

CAlLLcond Call subroutine conditionally RPTS Repeat single instruction

DBcond Decrement and branch Swi Software interrupt
conditionally (standard)

DBcondD Decrement and branch TRAP cond | Trap conditionally
conditionally (delayed)

11.1.5 Interlocked Operations Instructions

The interlocked operations instructions support multiprocessor communi-
cation. Through the use of external signals, these instructions allow for pow-
erful synchronization mechanisms. They also guarantee the integrity of the
communication and result in a high-speed operation. Refer to Section 7 for
examples of the use of interlocked instructions. Table 11-5 lists the five in-
terlocked operations instructions.

Table 11-5. Interlocked Operations Instructions

INSTRUCTION DESCRIPTION INSTRUCTION DESCRIPTION
LDFI Load floating-point value, STFI Store floating-point value,
interlocked interlocked
LDN Load integer, interlocked STH Store integer, interlocked
SIGI Signal, interlocked

11.1.6 Parallel Operations Instructions

The parallel-operations instructions group allows for a high degree of paral-
lelism. Some of the TMS320C30 instructions can occur in pairs that will be
executed in parallel. These parallel instructions provide:

® Parallel loading of registers,

o Parallel arithmetic operations, or

® Arithmetic/logical instructions used in parallel with a store instruction.
Each instruction in a pair is entered as a separate source statement. The sec-

ond instruction in the pair must be preceded by two vertical bars (]|). Table
11-6 lists the valid instruction pairs.
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Table 11-6. Parallel Instructions

MNEMONEI DESCRIPTION OPERATION
PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS
ABSF Absolute value of a floating-point |src2| — dst1
|| STF || src3 = dst2
ABSI Absolute value of an integer |src2| = dst1
j| STI || src3 = dst2
ADDF3 Add floating-point srcl + src2 = dstl
Il STF || src3 = dst2
ADDI3 Add integer srcl + src2 — dstil
Il STI || src3 = dst2
AND3 Bitwise logical-AND src1 AND src2 — dst1
|| STI || src3 = dst2
ASH3 Arithmetic shift If count > 0:
|| STI src2 << count - dst1
|| src3 = dst2
Else:
src2 >> [count| —* dst1
|| sre3 = dst2
FiX Convert floating-point to integer Fix(src2) - dst1
|| STI |} src3 = dst2
FLOAT Convert integer to floating-point Float(src2) — dst1
|| STF |} src3 — dst2
LDF Load floating-point src2 = dst1
|| STF || sre3 = dst2
LDl Load integer src2 — dstl
|l STI || src3 = dst2
LSH3 Logical shift if count > O:
il ST src2 << count = dst1
|| src3 = dst2
Eise:
src2 >> |count| — dst1
|| sre3 — dst2
MPYF3 Multiply floating-point src1 x src2 = dstl
|| STF || sre3 = dst2
MPYI3 Multiply integer src1 x src2 = dstl
|| STI || src3 — dst2
NEGF Negate floating-point 0- src2 — dst1
|| STF | sre3 = dst2
LEGEND:

src1 - register addr (RO-R7)
src3 - register addr (RO-R7)
dst1 - register addr (R0-R7)

src2 — indirect addr (disp = 0, 1, IR0, IR1)
srcé4 — indirect addr (disp = 0, 1, IRO, IR1)
dst2 - indirect addr (disp = 0, 1, IR0, IR1)
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Table 11-6. Parallel Instructions (Concluded)

MNEMONIC | DESCRIPTION { OPERATION
PARALLEL ARITHMETIC WITH STORE INSTRUCTIONS (Concluded)
NEGH Negate integer 0 - src2 - dst1
{| STI || src3 = dst2
NOT3 Complement src—> dst1
|| STI || sre3 = dst2
OR3 Bitwise logical-OR src1 OR src2 — dst1
[| STI {| src3 = dst2
STF Store fioating-point src1 — dst1
|| STF || src3 = dst2
STI Store integer src1 — dst1
|| STI || src3 = dst2
SUBF3 Subtract floating-point scrl - src2 — dstl
|| STF || sre3 - dst2
SUBI3 Subtract integer srcl - src2 = dstl
|| STI || src3 = dst2
XOR3 Bitwise exclusive-OR src1 XOR src2 — dstil
|} STI || src3 = dst2
PARALLEL LOAD INSTRUCTIONS
LDF Load floating-point src2 = dsti
|| LDF || src4 = dst2
LDI Load integer src2 = dst1
|| LDI || src4 = dst2
PARALLEL MULTIPLY AND ADD/SUBTRACT INSTRUCTIONS
MPYF3 Multiply and add floating-point op1 x op2 = op3
|| ADDF3 || opd + op5 — opb
MPYF3 Multiply and subtract floating-point opl x op2 - op3
|| SUBF3 || op4 - opb = op6
MPYI3 Multiply and add integer opl1 x op2 = op3
|t ADDI3 || op4 + op5 — opb
MPYI3 Multiply and subtract integer op1 x op2 = op3
|| SUBI3 || op4 - op5 — opb
LEGEND: |
src1 - register addr (RO-R7) src2 ~- indirect addr (disp = 0, 1, IRO, IR1)
src3 - register addr (RO-R7) srcd - indirect addr (disp = 0, 1, IRO, IR1) 1
dst1 - register addr (RO-R7) dst2 - indirect addr (disp = 0, 1, IRO, IR1)
op3 - register addr (RO or R1) op6 - register addr (R2 or R3)

op1,0p2,0p4.0p5 - Two of these operands must be specified using register addr,
and two must be specified using indirect addr.
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11.2 Condition Codes and Flags

The TMS320C30 provides 20 condition codes that can be used with any of
the conditional instructions, such as RETScond or LDFcond. The conditions
include signed and unsigned comparisons, comparisons to zero, and compar-
isons based on the status of individual condition flags. Note that all condi-
tional instructions can accept the suffix ‘U’ to indicate unconditional
operation.

Seven condition flags provide information related to properties of the result
of arithmetic and logical instructions. The condition flags are stored in the
status register (ST). These flags are modified by the majority of instructions
according to whether a result is generated when performing the specified op-
eration to infinite precision or an output is written to the destination register.
The formats for output values are shown in Table 11-7.

Table 11-7. Output Value Formats

TYPE OF OPERATION OUTPUT FORMAT
Floating-point 8-bit exponent, 1 sign bit, 31-bit fraction
Integer 32-bit integer
Logical 32-bit unsigned integer

The condition flags are affected by instructions in only the following cases:

1)  The destination register is one of the extended-precision registers (RO -
R7)

2)  The instruction is one of the compare instructions (CMPF, CMPF3,
CMPI, CMPI3, TSTB, or TSTB3).

Case 1 allows for modification of the registers used for addressing without
affecting the condition flags during computation. Case 2 makes it possible to
set the condition flags based upon the contents of any of the CPU registers.

The following list defines the condition flags and describes how the flags are
set by most instructions. For specific details of the effect of a particular in-
struction on the condition flags, see the description of that instruction in
Section 9.2.

N Negative Condition Flag. Logical operations assign N the state
of the MSB of the output value. For integer and floatina-point oper-
ations, N is set if the result is negative, and cleared otherwise. Zero
is considered to be positive.

z Zero Condition Flag. For logical, integer, and floating-point oper-
ations, Z is set if the output is 0, and cleared otherwise.

A\ Overflow Condition Flag. For integer operations, V is set if the
result does not fit_into the format specified for the destination (i.e.,
-232 < result < 232 1). Otherwise, V is cleared. For floating-point
operations, V is set if the exponent of the result is greater than 127,
otherwise,V is cleared. Logical operations always clear V.

(o Carry Flag. When an integer addition is performed, C is set if a carry
occurs out of the bit corresponding to the MSB of the output. When
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UF

Lv

LUF

an integer subtraction is performed, C is set if a borrow occurs into the
bit corresponding to the MSB of the output. Otherwise, for integer
operations, C is cleared. The carry flag is unaffected by floating-point
and logical operations.

Floating-Point Underflow Condition Flag. A floating-point
underflow occurs whenever the exponent of the result is less than or
equal to -128. If a floating-point underflow occurs, UF is set, and the
output value is set to 0. UF is cleared if a floating-point underflow
does not occur.

Latched Overflow Condition Flag. LV is set whenever V (over-
flow condition flag) is set. Otherwise, it is unchanged. LV may only
be cleared by a processor reset or by modifying it in the status register
(ST).

Latched Underflow Condition Flag. LUF is set whenever UF
(floating-point underflow flag) is set. LUF may only be cleared by a
processor reset or by modifying it in the status register (ST).

Table 11-8 lists the condition mnemonic, code, description, and flag for each
of the 19 conditions.
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11-10

Table 11-8. Condition Codes and Flags

CONDITION| CODE | DESCRIPTION | FLAG
UNCONDITIONAL COMPARES
U [ 00000 | unconditional | Don't care
UNSIGNED COMPARES
LO 00001 Lower than [
LS 00010 Lower or same CORZ
HI 00011 Higher than ~C AND ~Z
HS 00100 Higher or same ~C
EQ 00101 Equal Z
NE 00110 Not Equal ~Z
SIGNED COMPARES
LT 00111 Less than N
LE 01000 Less than or equal NORZ
GT 01001 Greater than ~N AND ~Z
GE 01010 Greater than or equal ~N
EQ 00101 Equal z
NE 00110 Not equal ~Z
COMPARE TO ZERO
z 00101 Zero z
Nz 00110 Not zero ~Z
P 01001 Positive ~N AND ~2Z
N 00111 Negative N
NN 01010 Nonnegative ~N
COMPARE TO CONDITION FLAGS
NN 01010 Nonnegative ~N
N 00111 Negative N
NZ 00110 Nonzero ~Z
Y4 00101 Zero z
NV 01100 No overflow ~V
\ 01101 Overflow \
NUF 01110 No underflow ~UF
UF 01111 Underflow UF
NC 00100 No carry ~C
(o 00001 Carry Cc
NLV 10000 No latched overflow ~LV
LV 10001 Latched overflow LV
NLUF 10010 No latched floating-point underflow ~LUF
LUF 10011 Latched floating-point underflow LUF
ZUF 10100 Zero or floating-point underflow Z OR UF

~ Logical complement
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11.3 Individual Instructions

This section contains the individual assembly language instructions for the
TMS320C30. The instructions are listed in alphabetical order. Information,
such as assembler syntax, operation, operands, encoding, description, cycles,
status bits, mode bit, and examples, is provided for each instruction. An ex-
ample instruction precedes the individual instruction listings to show the
special format used and explain its content.

Preceding the individual instruction descriptions, the symbols and abbrevi-
ations used in the individual instructions are defined. In addition, some op-
tional syntax forms allowed by the assembler are described.

A functional grouping of the instructions is provided in Section 1.6. A com-
plete instruction set summary can be found in Section 1.6.8. Appendix B lists
the opcodes for all the instructions. Refer to Section 6 for information on
memory addressing. Code examples using many of the instructions are given
in Section 12, Software Applications.

11.3.1 Symbols and Abbreviations

Table 11-9 lists the symbols and abbreviations used in the individual instruc-
tion descriptions.

11-11
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Table 11-9. Instruction Symbols

SYMBOL MEANING
src Source operand
srcl Source operand 1
src2 Source operand 2
src3 Source operand 3
srcd Source operand 4
dst Destination operand
dst? Destination operand 1
dst2 Destination operand 2
disp Displacement
cond Condition
count Shift count
G General addressing modes
T Three-operand addressing modes
P Paralle! addressing modes
B Conditional-branch addressing mades
ARn Auxiliary register n
IRn Index register n
Rn Register address n
RC Repeat count register
RE Repeat end address register
RS Repeat start address register
ST Status register
C Carry bit
GIE Global interrupt enable bit
N Trap vector
PC Program counter
RM Repeat mode flag
SP System stack pointer
1| Absolute value of x
Xy Assign the value of x to destination y
x(man) Mantissa field (sign + fraction) of x
x{exp) Exponent field of x
op1
|| op2 Operation 1 performed in parallel with operation 2
x AND y Bitwise logical-AND of x and y
xORy Bitwise logical-OR of x and y
x XORy Bitwise fogical-XOR of x and y
~X Bitwise logical-complement of x
X <<y Shift x to the left y bits
X>>y Shift x to the right y bits
*++SP Increment SP and use incremented SP as address
*SP-- Use SP as address and decrement SP

11-12



Assembly Language Instructions - Individual Instructions

11.3.2 Optional Assembler Syntaxes

The assembler allows a relaxed syntax form for some of the instructions.
These optional forms simplify the assembly language so that special-case
syntax can be ignored for some of the instructions. The following is a list of
these optional syntax forms.

o The destination register can be omitted on unary arithmetic and logical
operations when the same register is used as a source. For example,
ABSI RO,RO can be written as ABSI RO
Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI,
NORM, NOT, RND.

Q All 3-operand instructions can be written without the ‘3’. For example,
ADDI3 RO,R1,R2 can be written as ADDI RO,R1,R2

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3,
LSH3, MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3.

This also applies to all the pertinent parallel instructions.
- All 3-operand comparison instructions can be written without the ‘3.
For example,
CMPI3 RO, *ARO can be written as CMPI RO, *ARO
Instructions affected: CMPI3, CMPF3, TSTB3.
© Indirect operands with an explicit O displacement are allowed. In

3-operand or parallel instructions, operands with O displacement are
automatically converted to “no-displacement” mode. For example:

LDI *+ARO(0O),R1

is legal

Also

ADDI3 *+AR0O(0),R1,R2 is equivalent to ADDI3 *ARO,R1,R2

o Indirect operands can be written with no displacement, in which case a
displacement of one is assumed. For example,

LDI *ARO++(1),RC can be written LDI *ARO++,RO

o All conditional instructions accept the suffix ‘U’ to indicate uncondi-
tional operation. Also, the U can be omitted from unconditional short
branch instructions. For example:

BU label can be written B label

o Labels can be written with or without a trailing colon. For example:

labelO: NOP
labell NOP
label2:

NOP

11-13
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11-14

Empty expressions are not allowed for the displacement in indirect
mode:

LDI *+ARO(),RO is not legal
Long immediate mode operands (destination of BR and CALL) can be
written with an at-sign:

BR label can be written BR @label
The LDP pseudo-op can be used to load a register (usually DP) with the
8 MSBs of a relocatable address. The instruction is written:

LDP addr,REG or LDP @addr,REG
The at-sign is optional.

If the destination REG is the DP, it can be omitted. LDP generates a LDI
instruction with an immediate operand, and a special relocation type.
Parallel instructions can be written in either order. For example:
ADDI can be written as STI
|} sTI || ADDI
The parallel bars indicating part 2 of a parallel instruction can be written
anywhere on the line, from column O to the mnemonic. For example:
ADDI can be written as ADDI
|| STI || STI

If the second operand of a parallel instruction is the same as the third
(destination register) operand, the third operand can be omitted. This
allows the writing of 3-operand paraliel instructions that 'look like’ nor-
mal 2-operand instruction. For example,

ADDI *ARO,R2,R2  can be written as ADDI *ARO,R2
|| MPYI *AR1,RO,RO || MPYI *AR1,RO

Instructions (applies to all parallel instructions that have a register sec-
ond operand) affected: ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI,
SUBF, XOR.

All commutive operations in parallel instructions can be written in either
order. For example, the ADDI part of a parallel instruction can be written
in either of two ways:

ADDI *ARO,R1,R2 or ADDI R1,*ARO,R2

The instructions affected are parallel instructions containing any of the
following: ADDI, ADDF, MPYI, MPYF, AND, OR, XOR.
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11.3.3 Individual Instruction Descriptions

Each assembly language instruction for the TMS320C30 is described in this
section. The instructions are listed in alphabetical order. An example instruc-
tion precedes the individual instructions to show the special format used and
explain its content. This example instruction describes the assembler syntax,
operation, operands, encoding, description, cycles, status bits, mode bit, and
examples.

11-15



EXAMPLE

Example Instruction

Syntax

Operation

Operands

11-16

INST <src>,<dst>
or

INST1 <src2>,<dst71>
|} INST2 <sre3>,<dst2>

Each instruction begins with an assembler syntax expression. Labels may
be placed either preceding the command (instruction mnemonic) on the
same line or on the preceding line in the first column. The optional com-
ment field that concludes the syntax is not included in the syntax ex-
pression. Space(s) are required between each field (label, command,
operand, and comment fields).

The syntax examples illustrate the common one-line syntax and the two-
line syntax used in parallel addressing. Note that the two vertical bars || that
indicate a parallel addressing pair can be placed anywhere before the mne-
monic on the second line. The first instruction in the pair can have a label,
but the second instruction cannot have a label.

|src| = dst
or

|src2| — dst1
|| sre3 = dst2

The instruction operation sequence describes the processing that takes
place when the instruction is executed. For parallel instructions, the opera-
tion sequence is performed in parallel. Conditional effects of status register
specified modes will be listed for conditional instructions such as Becond.

src general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
1 0 indirect
11 immediate

dst register (Rn, 0 < n < 27)

or

src2 indirect (disp = 0, 1, 1RO, IR1)
dst1 register (Rn1,0 < n1 < 7)
src3 register (Rn2,0 < n2 £ 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Operands are defined according to the addressing mode and/or the type of
addressing used. Note that indirect addressing uses displacements and the
index registers. Refer to Section 6 for detailed information on addressing.
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Encoding
31 2423 1615 87 0
LR T 1 ] T 1 T LI LI} 1 L L ¥ 1 T 1 1 1 1 1 T i 1 ¥
000 INST G dst src
or
31 2423 1615 87 0
1 ] LI ! 1 1] ¥ T B | { 1 1 ] ] 1 1 1 H 1 1 1 1 1 |l
1 1§ INS1}JINS2 dstl1 |0 O 0| src3 dst2 src2
Encoding examples are shown using general addressing and parallel ad-
dressing. The instruction pair for the parallel addressing example consists
of INS1 and INS2.

Description Instruction execution and its effect on the rest of the processor or memory
contents are described. Any constraints on the operands imposed by the
processor or the assembler are discussed. The description parallels and
supplements the information given by the operation block.

Cycles 1

Status Bits

Mode Bit

The digit specifies the number of cycles required to execute the instruction.

N Negative Condition Flag. 1 if a negative result is generated, O
otherwise. In some instructions, this flag is the MSB of the output.
For other instructions, this flag is unaffected.

z Zero Condition Flag. 1 if a zero result is generated, O otherwise.
For logical and shift instructions, 1 if a zero output is generated, 0
otherwise. This flag may be unaffected.

A\ Overflow Condition Flag. 1 if an integer or floating-point over-
flow occurs, 0 otherwise. This flag may be unaffected.

C Carry Flag. 1 if a carry or borrow occurs, 0 otherwise. For shift
instructions, this flag is set to the value of the last bit shifted out; 0
for a shift count of 0. This flag may be unaffected.

UF Floating-Point Underflow Condition Flag. If a floating-point
underflow occurs, 0 otherwise. This flag may be unaffected.

LV  Latched Overflow Condition Flag. 1 if an integer or floating-
point overflow occurs, unchanged otherwise. This flag may be un-
affected.

LUF Latched Floating-Point Underflow Condition Flag. 1 if a
floating-point underflow occurs, unchanged otherwise. This flag
may be unaffected.

The seven condition flags, stored in the status register (ST), are modified
by the majority of instructions. They provide information as to the properties
of the result or output of arithmetic or logical operations.

OVM Overflow Mode Flag. In general, integer operations are affected
by the OVM flag.

11-17



EXAMPLE Example Instruction

Example INST @98AEh,R5

Before Instruction:

DP = 80h

R5 = 0766900000h = 2.30562500e+02

Memory at 8098AEh = 5CDFh = 1.00001107e+00
LUFLVUFNZVC=0000000

After Instruction:

DP = 80h

R5 = 0066900000h = 1.80126953e+00

Memory at 8098AEh = 5CDFh = 1.00001107e+00
LUFLVUFNZVC=0000000

The sample code presented in the above format shows the effect of the
code on system pointers (e.g., DP or SP), registers (e.g., R1 or R5), mem-
ory at specific locations, and the seven status bits. The values given for the
registers include the leading zeros to show the exponent in floating-point
operations. Decimal conversions are provided for all register and memory
locations. The seven status bits are listed in the order in which they appear
in the assembler and simulator (see Table 11-9 and Section 11.2 for further
information on these seven status bits).
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Absolute Value of Floating-Point ABSF

Syntax ABSF <src>,<dst>

Operation |sre| = dst

Operands src general addressing modes (G):
00 register (Rn,0 s n <7)
01 direct
1 0 indirect

11 immediate
dst register (Rn, 0 s n g 7)

Encoding

31 2423 1615 87 0
1 T 1 L T T T 1 T T T T T 1] T ] T T T 1 ¥ T

OOOOOOOOOG dst src

Description  The absolute value of the src operand is loaded into the dst register. The
src and dst operands are assumed to be floating-point numbers.

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The
result is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh.

Cycles 1
Status Bits N 0
4 1 if a zero result is generated, 0 otherwise.
\"J 1 if a floating-point overflow occurs, 0 otherwise.
(o] Unaffected.
UF O

LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.

Example ABSF R4,R7

Before instruction:

R4 = 05C8000F971h = -9.90337307e+27
R7 = 07D251100AEh = 5.48527255e+37
LUFILVUFNZVC=0000000

After Instruction:

R4 = 06C8000F971h =
R7 = 0507FFF068F =
LUFLVUFNZVC

90337307e+27
90337307e+27
0000000

-9.
9.
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ABSF||STF Parallel ABSF and STF

Syntax ABSF <src2>,<dst1>
|| STF <sre3>,<dst2>
Operation |sre2| = dst1
|| sre3 = dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dst1 register (Rn1,0 < n1 < 7)
sre3 register (Rn2,0 < n2 < 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding
31 24 23 1615 87 0
1 ] ' T 1 1 T 1 T 1] 1 T 1 1 1 1 1 1 t 1 T 1] T T T
1 110 01 0 0| dst1 |0 O O src3 dst2 src2

Description A floating-point absolute value and a floating-point store are performed in
parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (STF) reads
from a register and the operation being performed in parallel (ABSF) writes
to the same register, then STF accepts as input the contents of the register
before it is modified by the ABSF.

If src2 and dst2 point to the same location, src2 is read before the write to
dst2.

An overflow occurs if src {(man) = 80000000h and src (exp) = 7Fh. The
result is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh.

Cycles

0
1 if a zero result is generated, O otherwise.

1
Status Bits N

z

\"/ 1 if a floating-point overflow occurs, 0 otherwise.
C

UF

Unaffected.

0
LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.
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Parallel ABSF and STF ABSF||STF

Example

ABSF *++AR3(IR1),R4
|| STF R4,*-AR7(1)

Before Instruction:

AR3 = 8039800h

IR1 = OAFh

R4 = 733C00000h = 1.79750e+02

AR7 = 8098C5h

Data at 8098AFh = 68B4000h = -6.118750e+01
Data at 8098C4h = Oh
LUFLVUFNZVC=0000000

After Instruction:

AR3 = 8098AFh

IR1 = OAFh

R4 = 574C00000h = 6.118750e+01

AR7 = 8098C5h

Data at 8098AFh = 568B4000h = -6.118750e+01
Data at 8098C4h = 733C000h = 1.79750e+02
LUFLVUFNZVC=0000000
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ABSI

Absolute Value of Integer

Syntax ABSI <sre>,<dst>
Operation |sre|l = dst
Operands src general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n < 27)
Encoding
31 2423 1615 87 0
1 ¥ T T 1 ¥ T 1 ] T 1] 1 T 1 T 1 T 1 1 T 1 L I 1 1 T T
000j0 00OO0O*1| G dst src
Description  The absolute value of the src operand is loaded into the dst register. The
src and d’st operands are assumed to be signed integers.
An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is dst
= 7FFFFFFFh. If ST(OVM) = 0, the result is dst = 00000000h.
Cycles 1
Status Bits N 0
2 1 if a zero result is generated, 0 otherwise.
\Y 1 if an integer overflow occurs, 0 otherwise.

Mode Bit

11-22

C Unaffected.
UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation affected by OVM.



Absolute Value of Integer

ABSI

Example

Example

ABSI RO,RO
or ABST RO

Before Instruction:
RO = OFFFFFFCBh = -563

After Instruction:
RO = 035h = 53

ABSI *AR1,R3

Before Instruction:

AR1 = 20h
R3 = Oh
Data at 20h = OFFFFFFCBh = -53

After Instruction:

AR1 = 20h
R3 = 35h =53
Data at 20h = OFFFFFFCBh = -53
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ABSI||STI Parallel ABSI and STI

Syntax ABSI] <src2>,<dst1>
|| STI <sre3>,<dst2>
Operation |src2| = dst?
|| sre3 = dst2

Operands sre2 indirect (disp = 0, 1, IR0, IR1)
dst? register (Rn1,0 < n1 < 7)
src3 register (Rn2,0 < n2 < 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding
31 2423 1615 87 0
Ll ) ¥ T T ] T L 4 T L ) 1 ] L 1 T ] ¥ ¥ 1 1 1 1 T
110 01 0 1| dst1 |0 O O] src3 dst2 src2

Description  An integer absolute value and an integer store are performed in paraliel.
All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STI) reads from a
register and the operation being performed in paraliel (ABSI) writes to the
same register, then STI accepts as input the contents of the register before
it is modified by the ABSI.

If src2 and dst2 point to the same location, src2 is read before the write to
dst2.

An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is dst
= 7FFFFFFFh. If ST(OVM) = 0, the result is dst = 00000000h.

Cycles 1

Status Bits N 0
4 1 if a zero result is generated, 0 otherwise.
Vv 1 if an integer overflow occurs, 0 otherwise.

C Unaffected.

UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

. Mode Bit OVM Operation affected by OVM.
11
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Parallel ABSI and STI ABSI||STI

Example ABSI *-AR5(1),R5
|1 STI R1,*AR2--(IR1)

Before Instruction:

AR5 = 80399E2h

R5 = Oh

R1 = 42h = 66

AR2 = 8098FFh

IR1 = OFh

Data at 8099E1h = OFFFFFFCBh = -53
Data at 8098FFh = 2h = 2
LUFLVUFNZVC=0000000

After Instruction:

AR5 = 8099E2h

R5 = 35h = 53

R1 = 42h = 66

AR2 = 8098FOh

IR1T = OFh

Data at 8099E1h = OFFFFFFCBh = -53
Data at 8098FFh = 42h = 66
LUFLVUFNZVC=0000000
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ADDC

Add Integer with Carry

Syntax ADDC <src>,<dst>
Opearation dst + src + C = dst
Operands src general addressing modes (G):
00 register (Rn, 0 < n g 27)
01 direct
10 indirect
11 immediate
dst register (Rn, 0 < n < 27)
Encoding
31 24 23 16156 87 0
0 00j00 010 G dst 0 src
Description  The sum of the dst and src operands and the C (carry) flag is loaded into
the dst register. The dst and src operands are assumed to be signed inte-
gers.
Cycles 1

Status Bits

Mode Bit

Example
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N 1 if a negative result is generated, 0 otherwise.
4 1 if a zero result is generated, 0 otherwise.

Vv 1 if an integer overflow occurs, 0 otherwise.

C 1 if a carry occurs, 0 otherwise.

UF 0

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation affected by OVM.
ADDC R1,R5

Before Instruction:

R1 = O0OFFFF5C25h = -41,947
R5 = OOFFFFO19Eh = -65,122
LUFLVUFNZVC=0000001

After Instruction:

R1 = O0FFFF5C25h = -41,947
R5 = OOFFFE5DC4h = -107,068
LUFLVUFNZVC=0001001




Add Integer With Carry, 3-Operand

ADDC3

Syntax ADDC3 <src2>,<srcl>,<dst>
Operation srcl + src2 + C - dst
Operands src1 three-operand addressing modes (T):

00 register (Rn1,0 < nl1 < 27)
01 indirect (disp = 0, 1, IRO, 1R1)
10 register (Rn1,0 < n1 < 27)
11 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 < 27)
01 register (Rn2, 0 < n2 < 27)
1 0 indirect (disp = 0, 1, IRQ, IR1)
11 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 < n < 27)

Encoding

31 2423 1615 87 0
T 1 ] ¥ 1 1 1 1 ] 1 L Ll T L} Ll 1 1 L ) T T + ] T T T
0011000000} T dst srct src2

Description  The sum of the sre7 and srec2 operands and the C (carry) flag is loaded into
the d'st register. The src?, src2, and dst operands are assumed to be signed

integers.

Cycles 1

Status Bits N 1 if a negative result is generated, O otherwise.
z 1 if a zero result is generated, O otherwise.
\" 1 if an integer overflow occurs, 0 otherwise.
Cc 1 if a carry occurs, 0 otherwise.
UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

Mode Bit OVM Operation affected by OVM.
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ADDC3

Add Integer With Carry, 3-Operand

Example

Example
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ADDC3 *AR5++(IRO),R5,R2
or
ADDC3 R5,*AR5++(IR0),R2

Before Instruction:

AR5 = 809908h

IRO = 10h

R5 = 066h = 102

R2 = 0Oh

Data at 809908h = OFFFFFFCBh = ~53
LUFLVUFNZVC=0000001

After Instruction:
AR5 = 809918h

IR0 = 10h
R5 = 066h = 102
R2 = 032h = 50

Data at 809908h = OFFFFFFCBh = -53
LUFLVUFNZVC=0000001

ADDC3 R2, R7, RO

Before Instruction:

R2 = 02BCh = 700

R7 = OF82h = 3970

RO = Oh
LUFLVUFNZVC=0000001

After Instruction:

R2 = 02BCh = 700

R7 = OF82h = 3970

RO = 0123Fh = 4671
LUFLVUFNZVC=0000000




Add Floating-Point ADDF

Syntax ADDF <sre>,<dst>

Operation dst + src — dst

Operands src general addressing modes (G):
00 register (Rn,0 < n<7)
01 direct
1 0 indirect

11 immediate
dst register (Rn, 0 € n £ 7)

Encoding
31 2423 1615 87 0
T L T { L 1 1 T |l 1 i T T T 13 ¥ 1 T 1 ¥ 1 i 1 I T L
000000011 G dst src

Description  The sum of the dst and src operands is loaded into the dst register. The
dst and src operands are assumed to be floating-point numbers.

—_

Cycles

Status Bits 1 if a negative result is generated, O otherwise.

1 if a zero result is generated, 0 otherwise.

1 if a floating-point overflow occurs, 0 otherwise.
Unaffected.

UF 1 if a floating-point underflow occurs, O otherwise.

LV 1 if a floating-point overflow occurs, unchanged otherwise.

LUF 1 if a floating-point underflow occurs, unchanged otherwise.
Mode Bit OVM Operation not affected by OVM.

O<NZ

Example ADDF *AR4++(IR1),R5

Before Instruction:

AR4 = 809800h

IR1T = 12Bh

R5 = 0578800000h = 6.23750e+01

Data at 80992Bh = 86B2800h = 4.7031250e+02
LUFLVUFNZVC=0000000

After Instruction:

AR4 = 80992Bh

IR1T = 12Bh

R5 = 09052C0000h = 5.3268750e+02

Data at 80992Bh = 86B2800h = 4.7031250e+02
LUFLVUFNZVC=0000000
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ADDF3

Add Floating-Point, 3-Operand

Syntax ADDF3 <src2>,<src1>,<dst>
Operation srcl + src2 = dst
Operands src1 three-operand addressing modes (T):
00 register (Rn1,0<n1 <7)
01 indirect (disp = 0, 1, IRO, IR1)
10 register (Rn1,0 <nl1 <7)
11 indirect (disp = 0, 1, 1RO, IR1)
src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 <7)
01 register (Rn2,0 < n2 < 7)
1 0 indirect (disp = 0, 1, IRO, IR1)
11 indirect (disp = 0, 1, IRO, IR1)
dst register (Rn, 0 < n £ 7)
Encoding
31 2423 - 1615 87 0
L] ¥ T ¥ T T ] 1 1] ] 1 U 1 1 1 1 ] Ll T { ¥ 1 LI B B |
001/00000O01] T . dst srcl src2
Description  The sum of the src7 and src2 operands is loaded into the dst register. The
src1, src2, and dst operands are assumed to be floating-point numbers.
Cycles 1

Status Bits

Mode Bit

Example
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N 1 if a negative result is generated, O otherwise.

z 1 if a zero result is generated, O otherwise.

\" 1 if a floating-point overflow occurs, O otherwise.
C Unaffected.

UF 1 if a floating-point underflow occurs, 0 otherwise.
LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

OVM Operation not affected by OVM.
ADDF3 R6,R5,R1

or
ADDF3 R5,R6,R1

Before Instruction:

R6 = 086B280000h = 4.7031250e+02

R5 = 05679800000h = 6.23750e+01

R1 = Oh
LUFLVUFNZVC=0000000

After Instruction:

R6 = 086B280000h = 4.7031250e+02

R5 = 05679800000h = 6.23750e+01

R1 = 09052C0000h = 5.3268750e+02
LUFLVUFNZVC=0000000




Add Floating-Point, 3-Operand

ADDF3

Example

ADDF3 *+AR1(1),*AR7++(IR0O),R4

Before Instruction:

AR1 = 809820h

AR7 = 8099F0h

IRO = 8h

R4 = Oh

Data at 809821h = 700FO00h = 1.28940e+02
Data at 8099FOh = 34C2000h = 1.27590e+01
LUFLVUFNZVC=0000000

After Instruction:

AR1 = 809820h

AR7 = 8099F8h

IRO = 8h

R4 = 070DB20000h = 1.41695313e+02

Data at 809821h = 700FO00h = 1.28940e+02
Data at 8099F0h = 34C2000h = 1.27590e+01
LUFLVUFNZVC=0000000

11-31




ADDF3||STF Parallel ADDF3 and STF

Syntax ADDF3 <src2>,<srcl>,<dst1>
|| STF <sre3>,<dst2>
Operation srcl + src2 — dst1
|| sre3 = dst2
Operands src1 register (Rn1,0 < n1 < 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dst1 register (Rn2,0 £ n2 £ 7)
src3 register (Rn3, 0 < n3 < 7)
dst2 indirect (disp = 0, 1, IRO, IR1)
Encoding
31 2423 1615 87 0
1 1{0 0 1 1 0f dst1 srcl src3 dst2 src2

Description

Cycles

Status Bits

Mode Bit

11-32

A floating-point addition and a floating-point store are performed in paral-
lel. All registers are read at the beginning and loaded at the end of the ex-
ecute cycle. This means that if one of the parallel operations (STF) reads
from a register and the operation being performed in parallel (ADDF3)
writes to the same register, then STF accepts as input the contents of the
register before it is modified by the ADDF3.

If src2 and dst2 point to the same location, src2 is read before the write to
dst2.

1

N 1 if a negative result is generated, O otherwise.
z 1 if a zero result is generated, O otherwise.
\" 1 if a floating-point overflow occurs, 0 otherwise.

Cc Unaffected.

UF 1 if a floating-point underflow occurs, 0 otherwise.

LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

OVM Operation not affected by OVM.



Parallel ADDF3 and STF

ADDF3||STF

Example

ADDF3 *+AR3(IR1),R2,R5
|| STF R4,*AR2

Before Instruction:

AR3 = 809800h

IR1 = OA5h

R2 = 070C800000h = 1.4050e+02

R5 = Oh

R4 = 057B400000h = 6.281250e+01

AR2 = 8098F3h

Data at 8098A5h = 733C000h = 1.79750e+02
Data at 8098F3h = Oh
LUFLVUFNZVC=0000000

After Instruction:

AR3 = 809800h

IR1 = OABh

R2 = 070C800000h = 1.4050e+02

R5 = 0820200000h = 3.20250e+02

R4 = 057B400000h = 6.281250e+01

AR2 = 8098F3h

Data at 8098A5h = 733C000h = 1.79750e+02
Data at 8098F3h = 57B4000h = 6.28125e+01
LJUFLVUFNZVC=0000000
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ADDI

Add Integer

Syntax ADDI <src>,<dst>
Operation dst + src — dst
Operands src general addressing modes (G):
0 O register (Rn, 0 < n < 27)
0 1 direct
1 0 indirect
1 1 immediate
dst register (Rn, 0 < n < 27)
Encoding
31 24 23 1615 87 0
000j00O0TOO| G dst src
Description  The sum of the dst and src operands is loaded into the the dst register. The
dst and src operands are assumed to be signed integers.
Cycles 1
Status Bits N 1 if a negative result is generated, 0 otherwise.
2 1 if a zero result is generated, O otherwise.
\" 1 if an integer overflow occurs, O otherwise.
C 1 if a carry occurs, O otherwise.
UF 0

Mode Bit

Example
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LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation affected by OVM.

ADDI R3,R7

Before Instruction:

R3 = OFFFFFFCBh = -53
R7 = 35h = 563
LUFLVUFNZVC=0000000

After Instruction:

R3 = OFFFFFFCBh = -53
R7 = Oh
LUFLVUFNZVC=0000100



Add Integer, 3-Operand ADDI3

Syntax ADDI3 <src2>,<src1>,<dst>
Operation srcl + src2 - dst
Operands src1 three-operand addressing modes (T):
00 register (Rn1,0 < n1 < 27)
01 indirect (disp = 0, 1, IRO, IR1)
10 register (Rn1,0 < n1 < 27)
11 indirect (disp = 0, 1, IRO, IR1)
src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 < 27)
01 register (Rn2, 0 < n2 < 27)
10 indirect (disp = 0, 1, IR0, IR1)
11 indirect (disp = 0, 1, IR0, IR1)
dst register (Rn, 0 < n < 27)
Encoding
31 2423 1615 87 0
001/000010| T dst srcl src2
Description  The sum of the src7 and src2 operands is loaded into the dst register. The
srcl, src2, and dst operands are assumed to be signed integers.
Cycles 1

Status Bits

Mode Bit

N 1 if a negative result is generated, 0 otherwise.
2 1 if a zero result is generated, O otherwise.

\Y 1 if an integer overflow occurs, 0 otherwise.
Cc 1 if a carry occurs, 0 otherwise.

UF 0

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation affected by OVM.
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ADDI3

Add Integer, 3-Operand

Example

Example
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ADDI3 R4,R7,R5

Before Instruction:

R4 = ODCh = 220

R7 = OAOh =160

R6 = 10h = 16
LUFLVUFNZVC=0000000

After Instruction:

R4 = ODCh = 220
R7 = OAOh = 160
R5 = 017Ch = 380
LUFLVUFNZVC=0000000

ADDI3 *-AR3+(1),*AR6--(IRO),R2

Before Instruction:

AR3 = 809802h
AR6 = 809930h

IRO = 18h

R2 =10h =16

Data at 809801h = 2AF8h = 11,000

Data at 809930h = 3A98h = 15,000
LUFLVUFNZVC=0000000
After Instruction:

AR3 = 809852h

AR6 = 809918h

IRO = 18h

R2 = 06598h = 26,000

Data at 809801h = 2AF8h = 11,000

Data at 809930h = 3A98h = 15,000
LUFLVUFNZVC=0000000



Parallel ADDI3 and STI ADDI3||STI

Syntax ADDI3 <sre2>,<src1>,<dst1>
1| STI <sre3>,<dst2>
Operation srcT + src2 - dst]
|| sre3 = dst2
Operands src1 register (Rn1,0 < n1 < 7)

sre2 indirect (disp = 0, 1, IR0, IR1)
dst! register (Rn2,0 £ n2 <7)
sre3 register (Rn3,0 < n3 < 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding
31 2423 1615 87 0
T 1 T ¥ LIRS ] L ) T LY 1] 1 1 1 1 T L 1] 1] L T 1] L
110 0 1 1 1| dstl src1 src3 dst2 src2

Description  An integer addition and an integer store are performed in parallel. All reg-
isters are read at the beginning and loaded at the end of the execute cycle.
This means that if one of the parallel operations (STI) reads from a register
and the operation being performed in parallel (ADDI3) writes to the same
register, then STI accepts as input the contents of the register before it is
modified by the ADDI3.

If src2 and dst2 point to the same location, src2 is read before the write to

dst2.

Cycles 1

Status Bits N 1 if a negative result is generated, O otherwise.
z 1 if a zero result is generated, 0 otherwise.
A" 1 if an integer overflow occurs, 0 otherwise.
Cc 1 if a carry occurs, O otherwise.
UF 0

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

Mode Bit OVM Operation affected by OVM.

Example ADDI3 *ARO--(IRO),R5,RO
|| STI R3,*AR7

Before Instruction:
ARO = 80992Ch

IRO = OCh

R6 = ODCh = 220
RO = Oh

R3 = 36h = 53

AR7 = 80983Bh

Data at 80992Ch = 12Ch = 300

Data at 80983Bh = Oh
LUFLVUFNZVC=000000O00O0

11-37



ADDI3||STI Parallel ADDI3 and STI

After Instruction:

ARO = 809920h

IRO = OCh

R5 = ODCh = 220

RO = 208h = 520

R3 = 35h = 53

AR7 = 809838h

Data at 80992Ch = 12Ch = 300

Data at 80983Bh = 35h = 53
LUFLVUFNZVC=0000000
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Bitwise Logical-AND AND

Syntax AND <sre>,<dst>
Operation dst AND src - dst

Operands src general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
1 0 indirect
11 immediate (not sign-extended)

dst register (Rn, 0 < n < 27)

Encoding

31 24 23 1615 87 0
L L T T T T T 7 T T T T T T 1 T T T T T T T T T T

00 0{00OO01O0I1{ G dst src

Description  The bitwise logical-AND between the dst and src operands is loaded into
the dst register. The dst and src operands are assumed to be unsigned in-

tegers.
Cycles 1
Status Bits N MSB of the output.
z 1 if a zero output is generated, O otherwise.
\"/ 0
C Unaffected.
UF 0

LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.
Example AND R1,R2

Before Instruction:

R1 = 80h
R2 = 0AFFh
LUFLVUFNZV C=0000001

After Instruction:
R1 = 80h

R2 = 80h
LUFLVUFNZVC=0000001
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AND3

Bitwise Logical-AND, 3-Operand

Syntax AND <sre2>,<srcl1>,<dst>
Operation src1 AND src2 - dst
Operands src1 three-operand addressing modes (T):
00 register (Rn1,0 < nt < 27)
01 indirect (disp = 0, 1, IR0, IR1)
10 register (Rn1,0 < n1 < 27)
11 indirect (disp = O, 1, IR0, IR1)
src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 < 27)
01 register (Rn2, 0 < n2 < 27)
1 0 indirect (disp = 0, 1, IR0, IR1)
11 indirect (disp = 0, 1, IR0, IR1)
dst register (Rn, 0 € n < 27)
Encoding
31 2423 1615 87 0
001|000 0011} T dst srcl src2
Description  The bitwise logical-AND between the src7 and src2 operands is loaded into
the dst register. The src?, src2, and dst operands are assumed to be un-
signed integers.
Cycles 1
Status Bits N MSB of the output.
Z 1 if a zero output is generated, 0 otherwise.
\" 0
C Unaffected.
UF 0

Mode Bit

11-40

Lv Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.



Bitwise Logical-AND, 3-Operand AND3

Example AND3 *ARO--(IRO),*+AR1,R4

Before Instruction:
ARO = 8098F4h

IRO = 50h
AR1 = 809951h
R4 = Oh

Data at 8098A4h = 30h

Data at 809952h = 123h

LUF LVUF NZV C=0000000
After Instruction: ‘

ARO = 8098A4h

IRO = 50h
AR1 = 809951h
R4 = 020h

Data at 8098A4h = 30h
Data at 809952h = 123h
LUFLVUFNZVC=0000000

Example AND3 *-AR5,R7,R4

Before Instruction:

AR5 = 80985Ch

R7 = 2h

R4 = 0h

Data at 80985Bh = OAFFh
LIUFLVUFNZVC=0000000

After Instruction:

AR5 = 80985Ch

R7 = 2h

R4 = 2h

Data at 80985Bh = OAFFh
LUFLVUFNZVC=0000000
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AND3||STI

Parallel AND3 and STI

Syntax AND <sre2>,<src?>,<dst1>
|| STI <sre3>,<dst2>
Operation src] AND src2 — dst1
|} sre3 = dst2
Operands src1 register (Rn1,0 < n1 £ 7)
sre2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2,0 < n2 £ 7)
src3 register (Rn3,0 < n3 < 7)
dst2 indirect (disp = 0, 1, IRO, IR1)
Encoding
31 24 23 1615 87 1]
11101 0 0 0] dst1 srcl src3 dst2 src2
Description A bitwise logical-AND and an integer store are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STi) reads from a
register and the operation being performed in paraliel (AND3) writes to the
same register, then STI accepts as input the contents of the register before
it is modified by the AND3.
If sre2 and dst2 point to the same location, src2 is read before the write to
dst2.
Cycles 1
Status Bits N MSB of the output.
2 1 if a zero output is generated, 0 otherwise.
\" 0
(o] Unaffected.
UF O

Mode Bit
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LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.



Parallel AND3 and STI AND3||STI

Example AND3 *+AR1(IRO),R4,R7
|| STI R3,*AR2

Before Instruction:
AR1 = 8099F1h

IR0 = 8h

R4 = 0A323h
R7 = Oh

R3 = 36h = 53

AR2 = 80983Fh

Data at 8099F9h = 5C53h

Data at 80983Fh = Oh

LUFLVUF NZVC=0000000

After Instruction:

AR1 = 8099F1h

IRO = 8h

R4 = 0A323h

R7 = 03h

R3 = 35h = 53

AR2 = 80983Fh

Data at 8099F9h = 5C53h

Data at 80983Fh = 35h = 53
LUFLVUFNZVC=0000000
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ANDN

Bitwise Logical-AND with Complement

ANDN <src>,<dst>

Syntax
Operation dst AND ~src = dst
Operands src general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
1 0 indirect
11 immediate (not sign-extended)
dst register (Rn, 0 < n < 27)
Encoding
31 2423 1615 87 0
00O0|00O0110} G dst src
Description  The bitwise logical-AND between the dst operand and the bitwise logical
compiement (~) of the src operand is loaded into the dst register. The dst
and src operands are assumed to be unsigned integers.
Cycles 1

Status Bits

Mode Bit

Example
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N MSB of the output.

z 1 if a zero output is generated, O otherwise.
\" 0

C Unaffected.

UF O

LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.
ANDN @980Ch,R2

Before Instruction:

DP = 80h

R2 = 0C2Fh

Data at 80980Ch = 0A02h
LUFLVUFNZVC=0000000

After Instruction:

DP = 80h

R2 = 042Dh

Data at 80980Ch = 0A02h
LUFLVUFNZVC=0000000




Bitwise Logical-ANDN, 3-Operand ANDN3

Syntax ANDN3 <sre2>,<src1>,<dst>
Operation src? AND ~src2 - dst

Operands src1 three-operand addressing modes (T):
00 register (Rn1,0 < nl1 < 27)
01 indirect (disp = 0, 1, IRO, IR1)
10 register (Rn1,0 < n1 < 27)
11 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 < 27)
01 register (Rn2,0 < n2 < 27)
1 0 indirect (disp = 0, 1, IROQ, IR1)
11 indirect (disp = 0, 1, 100, IR1)

dst register (Rn, 0 < n < 27)

Encoding

31 2423 1615 87 0
T 1) ¥ T 1) 1 1 1 T T LI Ll 1 1 1 T T 1 T ) T i 1] L

0001|0001 00| T dst srcl src2

Description  The bitwise logical-AND between the src7 operand and the bitwise logical
complement (~) of the src2 operand is loaded into the dst register. The
src1, src2, and dst operands are assumed to be unsigned integers.

Cycles 1
Status Bits N MSB of the output.
z 1 if a zero output is generated, O otherwise.
Vv 0
C Unaffected.
UF 0
LV  Unaffected.

LUF Unaffected.
Mode Bit OVM Operation not affected by OVM.

Example ANDN3 R5,R3,R7

Before Instruction:

R5 = 0A02h

R3 = 0C2Fh

R7 = 0Oh
LUFLVUFNZVC=0000000

After Instruction:

R5 = 0A02h
R3 = 0C2Fh
R7 = 042Dh

LUFLVUFNZVC=0000000
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ANDN3

Bitwise Logical-ANDN, 3-Operand

Example

11-46

ANDN3 R1,*AR5++(IR0),RO

Before Instruction:

R1 = OCFh

AR5 = 809825h

IRO = 5h

RO = Oh

Data at 809825h = OFFFh
LUFLVUFNZVC=0000000

After Instruction:

R1 = OCFh

AR5 = 80982Ah

IRO = bh

RO = OF30h

Data at 809825h = OFFFh
LUFLVUFNZVC=0000000




Arithmetic Shift

ASH

Syntax ASH <count>,<dst>
Operation If (count > 0):
dst << count — dst
Else:
dst >> |count| - dst
Operands count general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
10 indirect
11 immediate
dst register (RN, 0 < n < 27)
Encoding
31 2423 1615 87
000j00O01T11] G dst count
Description  The seven least-significant bits of the count operand are used to generate
the two’s-complement shift count of up to 32 bits.
If the count operand is greater than zero, the dst operand is left-shifted by
the value of the count operand. Low-order bits shifted in are zero-filled,
and high-order bits are shifted out through the C (carry) bit.
Arithmetic left-shift:
Cedst<0
If the count operand is less than zero, the dst operand is right-shifted by the
absolute value of the count operand. The high-order bits of the dst operand
are sign-extended as it is right-shifted. Low-order bits are shifted out
through the C (carry) bit.
Arithmetic right-shift:
- sign of dst =» C
If the count operand is zero, no shift is performed, and the C (carry) bit is
set to 0. The count and dst operands are assumed to be signed integers.
Cycles 1
Status Bits N MSB of the output.
Z 1 if a zero output is generated, O otherwise.
\" 1 if an integer overflow occurs, O otherwise.

Mode Bit

C Set to the value of the last bit shifted out. O for a shift count of 0.

Unaffected if dst is not RO - R7.
UF O

LV 1 if an integer overflow occurs, unchanged otherwise.

LUF Unaffected.
OVM Operation not affected by OVM.
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ASH

Arithmetic Shift

Example

Example
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ASH R1,R3

Before Instruction:

R1 =10h =16
R3 = OAEOOOh
LUFLVUFNZVC=0000000

After Instruction:

R1 = 10h
R3 = OEO0000000h
LUFWWUFNZVC=0101010

ASH @98C3h,R5

Before Instruction:

DP = 80h

R5 = OAEC00001h

Data at 8098C3h = OFFE8 = -24
LUFLVUFNZVC=0000000

After Instruction:

DP = 80h

R6 = OFFFFFFAEh

Data at 8098C3h = OFFE8 = —24
LUFLWUFNZVC=0001001




Arithmetic Shift, 3-Operand ASH3

Syntax ASH3 <count>,<src>,<dst>
Operation If (count > 0):
src << count — dst
Else:

src >> |count| - dst

Operands count three-operand addressing modes (T):
00 register (Rn1,0 < n1 < 27)
01 direct (disp = 0, 1, IR0, IR1)
10 register (Rn1,0 s n1 < 27)

indirect (disp = 0, 1, IR0, IR1)

11

src three-operand addressing modes (T):
00 register (Rn2, 0 < n2 < 27)
01 register (Rn2, 0 < n2 < 27)

1 0 indirect (disp = 0, 1, IR0, IR1)

11 indirect (disp = 0, 1, 100, IR1)
dst register (Rn, 0 < n < 27)

Encoding
31 2423 1615 87 0
T T 1 1 1) T 1 T 1) T ] ] T 1] { 1t T { L) 13 1 i T 1] 1 1)
001000101 T dst src count

Description  The seven least-significant bits of the count operand are used to generate
the two’s-complement shift count of up to 32 bits.

If the count operand is greater than zero, the src operand is left-shifted by
the value of the count operand. Low-order bits shifted in are zero-filled,
and high-order bits are shifted out through the C (carry) bit.

Arithmetic left-shift:

Cesre<0
If the count operand is less than zero, the src operand is right-shifted by the
absolute value of the count operand. The high-order bits of the src operand

are sign-extended as it is right-shifted. Low-order bits are shifted out
through the C (carry) bit.

Arithmetic right-shift:
- sign of dst = C

If the count operand is zero, no shift is performed, and the C (carry) bit is
set to 0. The count, src, and dst operands are assumed to be signed inte-
gers.

Cycles 1
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ASH3

\ Arithmetic Shift, 3-Operand

Status Bits

Mode Bit

Example

Example
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N
z
\Y%
C
UF

Lv
LUF

MSB of the output.

1 if a zero output is generated, 0 otherwise.

1 if an integer overflow occurs, 0 otherwise.

Set to the value of the last bit shifted out. 0 for a shift count of 0.
Unaffected if dst is not RO - R7.

0

1 if an integer overflow occurs, unchanged otherwise.

Unaffected.

OVM Operation not affected by OVM.

ASH3

*AR3--(1),R5,R0

Before Instruction:

AR3 =

809921h

R5 = 02B0Oh
RO = Oh

Data at 809921h = 10h
LUF LVUF NZVC

16
0000000

After Instruction:

AR3 =

809920h

R5 = 000002B0Oh
RO = 02B00000h

Data at 809921h = 10h
LUFLVUF NZVC

ASH3

16
0000000

non

R1,R3,R5

Before Instruction:

R1 = OFFFFFFF8h = -8

R3 = OFFFFCBOOh

R5 = Oh
LUFLVUFNZVC=0000000

After Instruction:

R1 = OFFFFFFF8h = -8

R3 = OFFFFCBOOh

R5 = OFFFFFFCBh
LUFLVUFNZVC=0001000



Parallel ASH3 and STI

ASH3||STI

Syntax ASH3 <count>,<src2>,<dst1>
|| STI <sre3>,<dst2>
Operation If (count > 0):
sre2 << count — dst1
Else:
src2 >> |count| = dst7
|| sre3 — dst2
Operands count register (Rn1,0 < n1 £ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2,0 £ n2 £ 7)
src3 register (Rn3,0 € n3 <7)
dst2 indirect (disp = 0, 1, IR0, IR1)
Encoding
31 24 23 1615 87 0
11/]01 0 0 1] dst1 count src3 dst2 src2

Description

Cycles

The seven least-significant bits of the count operand register are used to

generate the two’s-complement shift count of up to 32 bits.

If the count operand is greater than zero, the dst operand is left-shifted by
the value of the count operand. Low-order bits shifted in are zero-filled,

and high-order bits are shifted out through the C (carry) bit.

Arithmetic left-shift:
Cesre2+0
If the count operand is less than zero, the dst operand is right-shifted by the

absolute value of the count operand. The high-order bits of the dst operand
Low-order bits are shifted out

are sign-extended as it is right-shifted.
through the C (carry) bit.

Arithmetic right-shift:

If the count operand is zero, no shift is performed, and the C (carry) bit is

- sign of src2 - C

set to 0. The count and dst aperands are assumed to be signed integers.

All registers are read at the bedginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STI) reads from a
register and the operation being performed in parallel (ASH3) writes to the
same register, then STI accepts as input the contents of the register before

it is modified by the ASH3.

If src2 and dst2 point to the same location, src2 is read before the write to

dst2.
1
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ASH3||STI

Parallel ASH3 and STI

Status Bits

Mode Bit

Example
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N MSB of the output.

z 1 if a zero output is generated, O otherwise.

\"/ 1 if an integer overflow occurs, 0 otherwise.

C Set to the value of the last bit shifted out. O for a shift count of 0.
UF O

LV 1 if an integer overflow occurs, unchanged otherwise.

LUF Unaffected.

OVM Operation not affected by OVM.

ASH3 R1,*AR6++(IR1),RO
{| STI  R5,*AR2

Before Instruction:

AR6 = 809900h

IR1 = 8Ch

R1 = OFFE8h = -24

RO = Oh

R5 = 36h = 53

AR2 = 8098A2h

Data at 809900h = OAEO00000h

Data at 8098A2h = Oh
LUFLVUFNZVC=0000000

After Instruction:

AR6 = 80998Ch

IR1 = 8Ch

R1 = OFFE8h = -24

RO = OFFFFFFAEh

R6 = 35h = 63

AR2 = 8098A2h

Data at 809900h = 0AEO00000h

Data at 8098A2h = 36h = 53
LUFLVUFNZVC=0001000



Branch Conditionally (Standard) Bcond

Syntax Bcond <src>

Operation If cond is true:
If src is in register addressing mode (Rn 0sn<27),

src = PC.

If src is in PC-relative mode (label or address),
displacement + PC + 1 - PC.
Else, continue.

Operands src conditional-branch addressing modes (B):
0 register
1 PC-relative

Encoding
31 2423 16156 87 0
¥ T L i 1 L T T T i ) 1 T T T v 1 T T i t Rl T T 1
011010|B|]O O O]0 cond register or displacement

Description Bcond signifies a standard branch that executes in four cycles. A branch
is performed if the condition is true. [f the src operand is expressed in reg-
ister addressing mode, the contents of the specified register are loaded into
the PC. If the src operand is expressed in PC-relative mode, the assembler
generates a displacement: displacement = label - (PC of branch instruction
+ 1). This displacement is stored as a 16 bit signed integer in the 16 least
significant bits of the branch instruction word. This displacement is added
to the PC of the branch instruction plus 1 to generate the new PC.

The TMS320C30 provides 20 condition codes that can be used with this
instruction (see Section 11.2 for a list of condition mnemonics, encoding,
and flags).

Cycles 4

Status Bits N Unaffected.
Z Unaffected.
AV Unaffected.
C Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.

Example BZ RO

Before Instruction:

PC = 2B00Oh
RO = 0003FFOOh
LUFLVUFNZVC=0000000

After Instruction:

PC = 3FFOOh
RO = O0C3FFO0h
LUFLVUFNZVC=0000000
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BcondD Branch Conditionally (Delayed)

Syntax BcondD <src>
Operation If cond is true:
If src is in register addressing mode (Rn 0<n<27),
src = PC.

If src is in PC-relative mode (label or address),
displacement + PC + 3 - PC.
Else, continue.

Operands src conditional-branch addressing modes (B):
0  register
1 PC-relative

Encoding

31 2423 1615 87 0
L T 1] L L T L T T L ] T 1§ T T i T
01101 0|B|O O 0f1 cond register or displacement

Description  BcondD signifies a delayed branch that allows the three instructions after

the delayed branch to be fetched before the PC is modified. The effectis a
single-cycle branch.
A branch is performed if the condition is true. If the src operand is ex-
pressed in register addressing mode, the contents of the specified register
are loaded into the PC. If the src operand is expressed in PC-relative mode,
the assembler generates a displacement: displacement = label - (PC of
branch instruction + 3). This displacement is stored as a 16 bit signed in-
teger in the 16 least significant bits of the branch instruction. This dis-
placement is added to the PC of the branch instruction plus 3 to generate-
the new PC. The TMS320C30 provides 20 condition codes that can be
used with this instruction (see Section 11.2 for a list of condition mne-
monics, encoding, and fiags).

Cycles 1

Status Bits N Unaffected.
Z Unaffected.
Vv Unaffected.

C Unaffected.
UF  Unaffected.
Lv Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.
Example BNZD 36 (36 = 24h)

Before Instruction:
PC = 50h
LUFLVUFNZVC=0000000

After Instruction:
PC =77h
LUFLVUFNZVC=0000000
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Branch Unconditionally (Standard) BR

Syntax BR <src>

Operation src =+ PC

Operands src long-immediate addressing mode

Encoding

31 ' 2423 1615 87 0
1 T T 1 1 1 T 1 1 1 ¥ 1] 1 1 T 1 1 1 T T 1 1 1 1 ] 1 1 T T

011000O0O0|O src

Description  BR signifies a standard branch that executes in four cycles. An uncondi-
tional branch is performed. The src operand is assumed to be a 24-bit un-
signed integer. Note that bit 24 = 0 for a standard branch.

Cycles 4

Status Bits N Unaffected.
Z Unaffected.
Vv Unaffected.
(o4 Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.
Example BR 805Ch

Before Instruction:

PC = 80h
LUFLVUFNZVC=0000000
After Instruction:

PC = 805Ch
LUFLVUFNZVC=0000000
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BRD

Branch Unconditionally (Delayed)

Syntax BRD <src>
Operation src =+ PC
Operands src long-immediate addressing mode
Encoding
31 24 23 1615 87 0
011000 0|1 src
Description BRD signifies a delayed branch that allows the three instructions after the
delayed branch to be fetched before the PC is modified. The effect is a
single-cycle branch.
An unconditional branch is performed. The src operand is assumed to be a
24-bit unsigned integer. Note that bit 24 = 1 for a delayed branch.
Cycles 1
Status Bits N Unaffected.
z Unaffected.
v Unaffected.
C Unaffected.

Mode Bit

Example
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UF  Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.
BRD 2Ch

Before Instruction:

PC = 1Bh
LUF LV UFNZVC=0000000

After Instruction:

PC = 2Ch
LUFLVUFNZVC=0000000



Call Subroutine

CALL

Syntax CALL <src>

Operation Next PC —» *++SP
src = PC

Operands src¢ long-immediate addressing mode

Encoding

31 2423 1615 87 0

0110001}|0 src

Description A call is performed. The next PC value is pushed onto the system stack. The
src operand is loaded into the PC. The src operand is assumed to be a
24-bit unsigned immediate operand.

Cycles 4

Status Bits N Unaffected.
2 Unaffected.
\") Unaffected.
(o4 Unaffected.

Mode Bit

Example

UF  Unaffected.
LvV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.

CALL 123456h

Before Instruction:

PC = 5h
SP = 809801h
LUFLVUFNZVC=0000000

After Instruction:

PC = 123456h

SP = 809802h

Data at 809802h = 6h
LUFLVUFNZVC=0000000
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CALLcond

Call Subroutine Conditionally

Syntax CAllcond <src>
Operation If cond is true:
Next PC = *++SP
If src is in register addressing mode (Rn 0sn<27),
src - PC.
If src is in PC-relative mode (label or address),
displacement + PC + 1 = PC.
Else, continue.
Operands src conditional-branch addressing modes (B):
0 register
1 PC-relative
Encoding
31 2423 1615 87 0
] L LI 1 1 v T T T LI S | T 1 T Ll L i T 1 1
011100|B|]00O0CO cond register or displacement
Description A call is performed if the condition is true. If the condition is true, the next
PC value is pushed onto the system stack. [f the src operand is expressed
in register addressing mode, the contents of the specified register are loaded
into the PC. If the src operand is expressed in PC-relative mode, the as-
sembler generates a displacement: displacement = label - (PC of call in-
struction + 1). This displacement is stored as a 16-bit signed integer in the
16 least significant bit of the call instruction word. This displacement is
added to the PC of the call instruction plus 1 to generate the new PC.
The TMS320C30 provides 20 condition codes that can be used with this
instruction (see Section 11.2 for a list of condition mnemonics, encoding,
and flags).
Cycles 5

Status Bits

11
Mode Bit
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N Unaffected.
Z Unaffected.
Vv Unaffected.
C Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.



Call Subroutine Conditionally CAlLLcond

Example CALLNZ R5

Before Instruction:

PC = 123h

SP = 809835h

R5 = 789h
LUFLVUFNZVC=0000000

After Instruction:

PC = 789h

SP = 809836h

R5 = 789h

Data at 809836h = 124h
LUFLVUFNZVC=0000000
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CMPF

Compare Floating-Point

Syntax CMPF <src>,<dst>
Operation dst - src
Operands src general addressing modes (G):
0 register (Rn, 0 < n < 7)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n £ 7)
Encoding
31 2423 1615 87 0
1 1] t 1 T 1 ] T 1 1 i L T i ¥ T T ] L LR T
0 0O|0O 0 0 0] G dst src
Description  The src operand is subtracted from the dst operand. The result is not loaded
into any register, thus allowing for nondestructive compares. The dst and
src operands are assumed to be floating-point numbers.
Cycles

Status Bits

Mode Bit

Example
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1
N 1 if a negative result is generated, 0 otherwisa.

z 1 if a zero result is generated, O otherwise.

\" 1 if a floating-point overflow occurs, O otherwise.

C Unaffected.

UF 1 if a floating-point underflow occurs, O otherwise.

LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

OVM Operation not affected by OVM.

CMPF *+AR4,R6

Before Instruction:

AR4 = 8098F2h

R6 = 070C800000h = 1.4050e+02

Data at 8098F3h = 070C8000h = 1.4050e+02
LUFLVUFNZVC=0000000

After Instruction:

AR4 = 8098F2h

R6 = 070C800000h = 1.4050e+02

Data at 8098F3h = 070C8000h = 1.4050e+02
LUFLVUFNZVC=0000100



Compare Floating-Point, 3-Operand CMPF3

Syntax CMPF3 <src2>,<srcl>
Operation srcl - src2
Operands src1 three-operand addressing modes (T):

00 register (Rn1,0 < n1 <7)
01 indirect (disp = 0, 1, IRO, IR1)
10 register (Rn1,0 < n1 <7)
11 indirect (disp = 0, 1, IR0, IR1)

src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 <7)

\

01 register (Rn2,0 < n2 < 7)

1 0 indirect (disp = 0, 1, IRO, IR1)

11 indirect (disp = 0, 1, IROQ, IR1)
Encoding

31 24 23 1615 87 0
1

1 T T Ll T 1 1 | T i T T

1 Ll Ll 1 1 i 1 1 i 1 1
001000110 T|{O0OO0OOODO

T
src2

T
srcl

Description  The src2 operand is subtracted from the src? operand. The resuit is not
loaded into any register, thus allowing for nondestructive compares. The
src1 and src2 operands are assumed to be floating-point numbers. Al-
though this instruction has only two operands, it is designated as a three
operand instruction since operands are specified in the three operand for-

mat.
Cycles 1
Status Bits N 1 if a negative result is generated, O otherwise.
Z 1 if a zero result is generated, 0 otherwise.
A\ 1 if a floating-point overflow occurs, 0 otherwise.

C Unaffected.

UF 1 if a floating-point underflow occurs, O otherwise.

LV 1 if a flaoting-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

Mode Bit OVM Operation not affected by OVM.

Example CMPF3 *AR2,*AR3--(1)

Before Instruction:

AR2 = 809831h

AR3 = 809852h

Data at 809831h = 77A7000h = 2.56044e+02
Data at 809852h = 57A2000h = 6.253125e+01
LUFLVUFNZVC=0000000

After Instruction:

AR2 = 809831h

AR3 = 809851h

Data at 809831h = 77A7000h = 2.5044e+02
Data at 809852h = 57A2000h = 6.253125e+01
LUFLVUFNZVC=0001000
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CMPI

Compare Integer

Syntax CMPI <sre>,<dst>
Operation dst - src
Operands src general addressing modes (G):
0 0 register (Rn, 0 < n < 27)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n < 27)
Encoding
31 2423 1615 87 0
] T 1 T 1 T 1 T T I v T T 1 ] 1) 1] 1 T 1 T L 1 Ll ] 1
0 00j{0 01001 G dst src
Description  The src operand is subtracted from the dst operand. The result is not loaded
into any register, thus allowing for nondestructive compares. The dst and
src operands are assumed to be signed integers.
Cycles 1
Status Bits N 1 if a negative result is generated, O otherwise.
z 1 if a zero result is generated, O otherwise.
\" 1 if an integer overflow occurs, O otherwise.
C 1 if a borrow occurs, 0 otherwise.
UF O

Mode Bit

Example
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LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation not affected by OVM.

CMPI R3,R7

Before Instruction:

R3 = 898h = 2200
R7 = 3E8h = 1000
LUFLVUFNZVC=0000000

After Instruction:

R3 = 898h = 2200
R7 = 3E8h = 1000
LUFLVUFNZVC=0001000



Compare Integer, 3-Operand CMPI3

Syntax CMPI3 <src2>,<srcl>
Operation srcl - src2
Operands src1 three-operand addressing modes (T):

00 register (Rn1,0 < n1 < 27)
01 indirect (disp = 0, 1, IRO, IR1)
10 register (Rn1,0 < n1 < 27)
11 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 < 27)

01 register (Rn2,0 < n2 < 27)

1 0 indirect (disp = 0, 1, IRO, IR1)

11 indirect (disp = 0, 1, IRO, IR1)
Encoding
31 2423 1615 87 0
001000111 T |0OO0O0O0OO srcl src2

Description  The src2 operand is subtracted from the src7 operand. The result is not
loaded into any register, thus allowing for nondestructive compares. The
src1 and src2 operands are assumed to be signed integers. Although this
instruction has only two operands, it is designated as a three operand in-
struction since operands are specified in the three operand format.

Cycles 1

Status Bits 1 if a negative result is generated, 0 otherwise.

1 if a zero result is generated, 0 otherwise.

1 if an integer overflow occurs, 0 otherwise.

1 if a borrow occurs, 0 otherwise.

UF ©0

LV 1 if an integer overflow occurs, unchanged otherwise.

LUF Unaffected.
Mode Bit OVM Operation not affected by OVM.

O<NZ

Example CMPI3 R7,R4

Before Instruction:

R7 = 03E8h = 1000
R4 = 0898h = 2200
LUFLVUFNZVC=0000000

After Instruction:

R7 = 03E8h = 1000
R4 = 0898h = 2200
LUFLVUFNZVC=0000000
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DBcond

Decrement and Branch Conditionally (Standard)

Syntax

Operation

Operands

Encoding
31

DBcond <ARn>,<src>

ARn -1 = ARn
If cond is true and ARn > 0 :
If src is in register addressing mode (Rn 0<n<27)
src = PC.
If src is in PC-relative mode (label or address)
displacement + PC + 1 = PC.
Else, continue.

src conditional-branch addressing modes (B):
0 register
1 PC-relative

ARn register (0 < n < 7)

T T i L T T 1
01101 1|Bl ARn |0 cond register or displacement

2423 1615 87 0

T ¥ L L il I i Ll Ll i

Description

Cycles
Status Bits

Mode Bit
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DBcond signifies a standard branch that executes in four cycles. The spe-
cified auxiliary register is decremented and a branch is performed if the
condition is true and the specified auxiliary register is greater than or equal
to zero.

The auxiliary register is treated as a 24-bit signed integer. The most-signi-
ficant eight bits are unmodified by the decrement operation. The compar-
ison of the auxiliary register uses only the 24 least-significant bits of the
auxiliary register. Note that the branch condition does not depend on the
auxiliary register decrement.

If the src operand is expressed in register addressing mode, the contents of
the specified register are loaded into the PC. If the src operand is expressed
in PC-relative addressing mode, the assembler generates a displacement:
displacement = label - (PC of branch instruction + 1). This integer is
stored as a 16 bit signed integer in the 16 least significant bits of the branch
instruction word. This displacement is added to the PC of the branch in-
struction plus 1 to generate the new PC.

The TMS320C30 provides 20 condition codes that can be used with this
instruction (see Section 11.2 for a list of condition mnemonics, encoding,
and flags).

4

N Unaffected.
z Unaffected.
Vv Unaffected.
C Unaffected.
UF Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.



Decrement and Branch Conditionally (Standard)

DBcond

Example

DBLT AR3,R2

Before Instruction:

PC = 5Fh
AR3 = 12h
R2 = 9Fh

LUFLVUFNZVC=0001000

After Instruction:

PC = 9Fh
AR3 = 11h
R2 = 9Fh
LUFLVUFNZVC=0001000
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DBcondD

Decrement and Branch Conditionally (Delayed)

Syntax DBcondD <ARn>,<src>
Operation ARn -1 - ARn
If cond is true:
If src is in register addressing mode (Rn 0<sn<27)
src —» PC
if src is in PC-relative mode (label or address)
displacement + PC + 3 = PC.
Else, continue.
Operands src conditional-branch addressing modes (B):
0 register
1 PC-relative
ARn register (0 £ n 5 7)
Encoding
31 2423 1615 87 (V]
01101 1|B|] ARn |1 cond register or displacement

Description

Cycles
Status Bits

Mode Bit
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DBcondD signifies a delayed branch that allows the three instructions after
the delayed branch to be fetched before the PC is modified. The effect is a
single-cycle branch. The specified auxiliary register is decremented and a
branch is performed if the condition is true and the specified auxiliary reg-
ister greater than or equal to zero.

The auxiliary register is treated as a 24-bit signed integer. The most-signi-
ficant eight bits are unmodified by the decrement operation. The compar-
ison of the auxiliary register uses only the 24 least-significant bits of the
auxiliary register. Note that the branch condition does not depend on the
auxiliary register decrement.

If the src operand is expressed in register addressing mode, the contents of
the specified register are loaded into the PC. If the src is expressed in
PC-relative addressing, the assembler generates a displacement: displace-
ment = label - (PC of branch instruction + 3). This displacement is added
to the PC of the branch instruction plus 3 to generate the new PC. Note
that bit 21 = 1 for a delayed branch.

The TMS320C30 provides 20 condition codes that can be used with this
instruction (see Section 11.2 for a list of condition mnemonics, encoding,
and flags).

1

N Unaffected.
z Unaffected.
Vv Unaffected.
C Unaffected.
UF  Unaffected.
Lv Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.



Decrement and Branch Conditionally (Delayed)

DBcondD

Example

DBZD AR5,$+110h

Before Instruction:

PC = Oh

AR5 = 67h
LUFLVUFNZVC=0000100

After Instruction:

PC = 110h
ARb = 66h
LUFLVUFNZVC=0000100
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FIX Floating-Point to Integer Conversion

Syntax FIX <sre>,<dst>

Operation fix(src) — dst

Operands src general addressing modes (G):
00 register (Rn, 0 < n <7)
01 direct
1 0 indirect

11 immediate
dst register (Rn, 0 < n < 27)

Encoding

31 2423 1615 87 0
L T 1 1 T T T 1 1 1 T L) 1 L) Ll Ll T L T T T Ll T 1 1

000|001 010| G dst src

Description  The floating-point operand src is converted to the nearest integer less than
or equal to it in absolute value, and the result is loaded into the dst register.
The src operand is assumed to be a floating-point number and the dst op-
erand a signed integer.

The exponent field of the result register (if it has one) is not modified.

Integer overflow occurs when the floating-point number is too large to be
represented as a 32-bit two’s-complement integer. In the case of integer
overflow, the result will be saturated in the direction of overflow.

Cycles

Status Bits 1 if a negative result is generated, O otherwise.

1 if a zero result is generated, 0 otherwise.

1 if an integer overflow occurs, 0 otherwise.

C Unaffected.

UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.

<NZ =

Example FIX R1,R2

Before Instruction:

R1 = 0A282CCCCCh = -1.3454e+3

R2 = Oh
LUFLVUFNZVC=0000000

After Instruction:

R1 = 0A282CCCCCh = -13454e+3
R2 = 541h = 1345
LUFLVUFNZVC=00000060
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Parallel FIX and STI FIX||STI

Syntax FIX <src2>,<dst1>
|| STl <sre3>,<dst2>
Operation fix(sre2) — dst1
|| sre3 = dst2

Operands src2 indirect (disp = 0, 1, IRO, IR1)
dst? register (Rn1,0 < nt1 < 7)
src3 register (Rn2,0 < n2 < 7)
dst2 indirect (disp = 0, 1, IRO, IR1)

Encoding
31 2423 1615 87 0
1 Ll ) L R I § J T 1 { | i ¥ L T 1] 1 1 ¥ T L] T L
11|01 01 0] dsti |0 O O src3 dst2 src2

Description A floating-point to integer conversion is performed. All registers are read
at the beginning and loaded at the end of the execute cycle. This means
that if one of the parallel operations (STI) reads from a register, and the
operation being performed in parallel (FIX) writes to the same register, then
STI accepts as input the contents of the register before it is modified by FIX.

If src2 and dst2 point to the same location, src2 is read before the write to
ast2.

Integer overflow occurs when the floating-point number is too large to be
represented as a 32-bit two's-complement integer. In the case of integer
overflow, the result will be saturated in the direction of overflow.

Cycles

1
Status Bits N 1 if a negative result is generated, O otherwise.
Z 1 if a zero result is generated, O otherwise.
\" 1 if an integer overflow occurs, 0 otherwise.
C Unaffected.
UF O
LV 1 if an integer overflow occurs, unchanged otherwise.

LUF Unaffected.
Mode Bit OVM Operation affected by OVM.
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FIX||STI

Parallel FIX and STI

Example
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FIX *++AR4(1),R1
|| STI RO,*AR2

Before Instruction:

AR4 = 8098A2h

R1 = 0Oh

RO = ODCh = 220

AR2 = 80983Ch

Data at 8098A3h = 733C000h = 1.7950e+02
Data at 80983Ch = Oh

LUFLVUFNZV C=0000000

After Instruction:

AR4 = 8098A3h

R1 = 0B3h =179

RO = ODCh = 220

AR2 = 80983Ch

Data at 8098A3h = 733C000h = 1.79750e+02
Data at 80983Ch = ODCh = 220
LUFLVUFNZVC=0000000




Integer to Floating-Point Conversion FLOAT

Syntax FLOAT <src>,<dst>

Operation float(src) — dst

Operands src general addressing modes (G):
00 register (Rn,0 < n < 27)
01 direct
1 0 indirect

11 immediate
dst register (Rn, 0 < n < 7)

Encoding
31 2423 1615 87 0
T 1 1 1 T 1 1 T 1 I T T 1 1 1 1 1 LR i T T ] ) T 1) 1]
000j0O0101T1| G dst src

Description  The integer operand src is converted to the floating-point value equal to it,
and the result loaded into the dst register. The src operand is assumed to
be a signed integer, and the dst operand a floating-point number.

Cycles 1
Status Bits N 1 if a negative result is generated, O otherwise.
2 1 if a zero result is generated, O otherwise.
\) 0
C Unaffected.
UF 0

LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.
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FLOAT

Integer to Floating-Point Conversion

Example
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FLOAT *++AR2(2),R5

Before Instruction:

AR2 = 809800h

R5 = 034C2000h = 1.27578125e+01

Data at 809802h = OAEh = 174
LUFLVUFNZVC=0000000

After Instruction:

AR2 = 809802h

R5 = 072E00000h = 1.74e+02

Data at 809802h = OAEh = 174
LUFLVUFNZVC=0000000




Parallel FLOAT and STF FLOAT||STF

Syntax FLOAT <src2>,<dstl1>
|| STF <sre3>,<dst2>
Operation float(src2) — dst7
|| sre3 = dst2
Operands sre2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1,0 < n1 < 7)
src3 register (Rn2,0 < n2 < 7)
dst2 register (disp = 0, 1, IR0, IR1)
Encoding
31 2423 1615 87 0
11|01 01 1| dst1 [0 O O src3 dst2 src2

Description

Cycles
Status Bits

Mode Bit

Example

An integer to floating-point conversion is performed. All registers are read
at the beginning and loaded at the end of the execute cycle. This means that
if one of the parallel operations (STF) reads from a register and the opera-
tion being performed in parallel (FLOAT) writes to the same register, then
STF accepts as input the contents of the register before it is modified by
FLOAT.

If src2 and dst2 point to the same location, src2 is read before the write to
dst2.

1

N 1 if a negative result is generated, 0 otherwise.
Z 1 if a zero result is generated, O otherwise.

v 0

C Unaffected.

UF O

Lv Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.

FLOAT *+AR2(IRO),R6
|| STF R7,*AR1

Before Instruction:

AR2 = 8098C5h

IRO = 8h

R6 = Oh

R7 = 034C200000h = 1.27578125e+01
AR1 = 809933h

Data at 8098CDh = OAEh = 174

Data at 809933h = Oh
LUFLVUFNZVC=0000000
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FLOAT||STF Parallel FLOAT and STF

11-74

After Instruction:

AR2 = 8098Cbh

IRO = 8h

R6 = 072E000000h = 1.740e+02

R7 = 034C200000h = 1.27578125e+01

AR1 = 809933h

Data at 8098CDh = OAEh = 174

Data at 809933h = 034C2000h = 1.27578125e+01
LUFLVUFNZVC=0000000




Interrupt Acknowledge IACK

Syntax IACK <src>
Operation Perform a dummy read operation with TACK = 0.
At end of dummy read, set IACK to 1.
Operands src general addressing modes (G):
01 direct
1 0 indirect
Encoding
31 2423 1615 87 0
¥ 1 1 T ] ] i 1] 1 ¥ 1] i T ¥ T 1 T T 1 T ) T L) ¥ 1 1 1]
000j110110}] G|0O0OO0OOO src
Description A dummy read operation is performed with TACK = 0. At the end of the
dummy read, 1ACK is set to 1. This instruction can be used to generate an
external interrupt acknowledge. If the address specified is off-chip, a read
operation from that address is performed. The IACK signal and the address
can then be used to signal interrupt acknowledge to external devices. The
data read by the processor is unused.
Cycles 1

Status Bits

Mode Bit

Example

N Unaffected.
2 Unaffected.
Vv Unaffected.
C Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.

IACK *ARS

Before Instruction:

IACK =1
PC = 300h
LUFLVUFNZVC=0000000

After Instruction:

IACK = 1
PC = 301h
LUFLVUFNZVC=0000000
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IDLE Idle Until Interrupt
Syntax IDLE
Operation 1 = ST(GIE)
Next PC = PC
Idle until interrupt.
Operands None
Encoding
31 2423 1615 87 0
L T T L 1) ] 1 i 1 1 L 1] T T t T 1] i T 1 1l L T 1 1 ¥ T 1
000|001 100/0000000000O0CO0CO0CO0OO0OO0OOO0OOOOODO
Description  The global interrupt enabie bit is set, the next PC value is loaded into the
PC, and the CPU idles until an interrupt is received. When the interrupt is
received, the contents of the PC are pushed on the active system stack.
Cycles 1
Status Bits N Unaffected.
z Unaffected.
A\ Unaffected.

Mode Bit

11-76

C Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.



Load Floating-Point Exponent LDE

Syntax LDE <src>,<dst>
Operation src(exp) — dst(exp)
Operands src general addressing modes (G):
00 register (Rn,0 < n <7)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 £ n < 7)
Encoding
31 2423 1615 87 0
1 ] T 1 1 T Ll 1 T 1 T T T 1l T T T T T 1 ¥ 1] T 1] 1 T T
000j001T101] G dst src
Description  The exponent field of the src operand is loaded into the exponent field of
the dst register. No modification of the dst register mantissa field is made
unless the value of the exponent loaded is the reserved value of the expo-
nent for zero in the precision of the src operand. Then the mantissa field
of the dst register is set to zero. The src and dst operands are assumed to
be floating-point numbers.
Cycles 1

Status Bits

Mode Bit

Example

N Unaffected.
2 Unaffected.
Vv Unaffected.
(o] Unaffected.
UF Unaffected.
[RY) Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.

LDE RO,RS5

Before Instruction:

RO = 0200056F30h = 4.00066337e+00
R5 = OAO56FE332h = 1.06749648e+03
LUFLVUFNZVC=0000000

After Instruction:

RO = 0200056F30h = 4.00066337e+00
R5 = 02056FE332h = 4.16990814e+00
LUFLVUFNZVC=0000000
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LDF

Load Floating-Point

Syntax LDF <sre>,<dst>
Operation src - dst
Operands src general addressing modes (G):
00 register (Rn,0 s n<7)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n < 7)
Encoding
31 2423 1615 87 0
1 T T T ] ] T 1 T T T T 1 1 1 T T 1 1 1 T 1 1 T T 1
0 000 O 11 0| G dst src
Description  The src operand is loaded into the dst register. The dst and src operands
are assumed to be floating-point numbers.
Cycles 1

Status Bits

Mode Bit

Example
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N 1 if a negative result is generated, O otherwise.
z 1 if a zero resuit is generated, O otherwise.

\ 0

C Unaffected.

UF O

LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.

LDF @9800h,R2

Before Instruction:

DP = 80h

R2 = Oh

Data at 809800h = 10C52A00h = 2.19254303e-+00
LUFLVUFNZVC=0000000

After Instruction:

DP = 80h

R2 = 010C52A000h = 2.19254303e+00

Data at 809800h = 10C52A00h = 2.19254303e+00
LUFLVUFNZVC=0000000



Load Floating-Point Conditionally LDFcond

Syntax LDFcond <src>,<dst>

Operation if cond is true:
src — dst.
Else:
dst is unchanged.

Operands src general addressing modes (G):
0 O register (Rn, 0 s n < 7)
0 1 direct
1 O indirect
1 1 immediate

dst register (Rn, 0 € n < 7)

Encoding
31 2423 1615 87 (1]
¥ ¥ t 1 1 L 1 L 1 1 1 T 1 1 ] i 1 T 1] ¥ i 1 ! ] ¥ T
0100 cond G dst src

Description If the condition is true, the src operand is loaded into the dst register.
Otherwise, the d'st register is unchanged. The dst and src operands are
assumed to be floating-point numbers.

The TMS320C30 provides 20 condition codes that can be used with this
instruction (see Section 11.2 for a list of condition mnemonics, encoding,
and flags). Note that an LDFU (load floating-point unconditionally) in-
struction is useful for loading R0-R7 without affecting condition flags.

Cycles 1

Status Bits N Unaffected.
Z Unaffected.
\Y Unaffected.
C Unaffected.

UF  Unaffected.
LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.

Example LDFZ R3,R5

Before Instruction:

R3 = 2CFF2CD500h = 1.77055560e+13
R5 = 5F0000003Eh = 3.96140824e+28
LUFLVUFNZVC=0000100

After Instruction:

R3 = 2CFF2CD500h = 1.77055560e+13
R5 = 2CFF2CD500h = 1.77055560e+13
LUFLVUFNZVC=0000100
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LDFI

Load Floating-Point, Interlocked

Syntax LDFl <src>,<dst>
Operation Signal interlocked operation.
src ~ dst
Operands src general addressing modes (G):
01 direct
1 0 indirect
dst register (Rn, 0 < n £ 7)
Encoding
31 2423 1615 87 0
T ) T ! I T T 1 IR 1 I T T 1 T 1 1 1 1 ¥ ] T Ll i ]
0 0O0|O0OO 11 1] G dst src
Description  The src operand is loaded into the dst register. An interlocked operation is
signaled over XFO and XF1. The src and dst operands are assumed to be
floating-point numbers. Note that only direct and indirect modes are al-
lowed. Refer to Section 7.3 for detailed description.
Cycles 1 if XF1 = 0 (see Section 7.3)

Status Bits

Mode Bit

Example

11-80

N 1 if a negative result is generated, O otherwise.
z 1 if a zero result is generated, O otherwise.

\") 0

C Unaffected.

UF 0

LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.
LDFI *+AR2,R7

Before Instruction:

AR2 = 8098F1h

R7 = 0Oh

Data at 8098F2h = 584C000h = -6.28125e+01
LUFLVUFNZVC=0000000

After Instruction:

AR2 = 8098F1h

R7 = 0584C00000h = -6.28125e+01

Data at 8098F2h = 584C000h = -6.28125e+01
LUFLVUFNZVC=0000001



Parallel LDF and LDF LDF||LDF

Syntax LDF <sre2>,<dst2>
|| LDF <srel>,<dstl>
Operation src2 — dst2
|| sre? - dst7

Operands srcT indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1,0 < n1 < 7)
src2 indirect (disp = 0, 1, IRO, IR1)
dst2 register (Rn2,0 < n2 < 7)

Encoding
31 2423 1615 87 0
1 1 3 1 1 ] T 1] T 1] T I T ¥ T Ll 1 ¥ 1 ¥ 1] + T 1] T
17 1/0 0 01 0] dst2 dstl1 |0 0 O srct src2

Description Two floating-point loads are performed in parallel. |f the LDFs load the
same register, the assembler issues a warning. The result is that of LDF
<src2>,<dst2>.

Cycles 1

Status Bits N Unaffected.
Z Unaffected.
v Unaffected.
C Unaffected.

UF  Unaffected.
LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.

Example LDF *--AR1(IRO),R7
|| LDF *AR7++(1),R3

Before Instruction:

AR1 = 80985Fh

IRO = 8h

R7 = 0h

AR7 = 80988Ah

R3 = 0Oh

Data at 809857h = 70C8000h = 1.4050e+02
Data at 80988Ah = 57B4000h = 6.281250e+01
LUFLVUFNZVC=0000000

After Instruction:

AR1 = 809857h

IRO = 8h

R7 = 070C800000h = 1.4050e+02

AR7 = 80988Bh

R3 = 057B400000h = 6.281250e+01

Data at 809857h = 70C8000h = 1.4050e+02
Data at 80988Ah = 57B4000h = 6.281250e+01
LUFLVUFNZVC=0000000
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LDF||STF

Parallel LDF and STF

Syntax LDF <src2>,<dst?1>
|| STF <src3>,<dst2>
Operation src2 - dstl
|| sre3 = dst2
Operands src2 indirect (disp = 0, 1, IRO, IR1)
dst1 register (Rn1,0 < n1 <7)
src3 register (Rn2, 0 < n2 < 7)
dst2 indirect (disp = 0, 1, IR0, IR1)
Encoding
31 2423 1615 87 0
11j0 1 1 0 O dst1 |0 O O] src3 dst2 src2
Description A floating-point load and a floating-point store are performed in parallel.
If src2 and dst2 point to the same location, src2 is read before the write to
dst2.
Cycles 1

Status Bits

Mode Bit

Example
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N Unaffected.
2 Unaffected.
Vv Unaffected.

C Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.

LDF *AR2--(1),R1 "
|| STF R3,*AR4++(IR1)

Before Instruction:

AR2 = 8098E7h

R1 = Oh

R3 = 057B400000h = 6.28125e+01

AR4 = 809900h

IR1 = 10h

Data at 8098E7h = 70C8000h = 1.4050e+02
Data at 809900h = Oh
LUFLVUFNZVC=0000000




Parallel LDF and STF LDF||STF

After Instruction:

AR2 = 8098E6h

R1 = 070C800000h = 1.4050e+02

R3 = 0567B400000h = 6.28125e+01

AR4 = 808910h

IR1 = 10h

Data at 8098E7h = 70C8000h = 1.4050e+02
Data at 809900h = 57B4000h = 6.28125e+01
LUFLVUFNZVC=0000000
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LDI

Load Integer

Syntax LDl <src>,<dst>
Operation src = dst
Operands src general addressing modes (G):
00 register (Rn,0 € n < 27)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 € n < 27)
Encoding
31 24 23 1615 87 0
0 00|01 0O0O0OUO0| G dst src
Description  The src operand is loaded into the dst register. The dst and src operands
are assumed to be signed integers. An alternate form of LDI, LDP, is used
to load the data page pointer register (DP), or any other register with the
eight MSBs of a relocatable address. See Section 11.3.2.
Cycles 1

Status Bits

Mode Bit

Example
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N 1 if a negative result is generated, O otherwise.
2 1 if a zero result is generated, O otherwise.

v 0

C Unaffected.

UF O

Lv Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.

LDI *-AR1(IRO),R5

Before Instruction:

AR1 = 2Ch

IRO = 5h

R5 = 3C5h = 965

Data at 27h = 26h = 38
LUFLVUFNZVC=0000000

After Instruction:

AR1 = 2Ch
IRO = 5h
R5 = 26h = 38

Data at 27h = 26h = 38
LUFLVUFNZVC=0000000



Load Integer Conditionally LDIcond

Syntax LDlcond <src>,<dst>

Operation If cond is true:
src — dst,
Else:
dst is unchanged.

Operands src general addressing modes (G):
0 O register (Rn, 0 < n < 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 < n < 27)

Encoding
31 2423 1615 87 0
T T ) ¥ 1) i 1 T t L 1] T 1 T T 1 T LI 1 T LI T T
0101 cond G dst src

Description If the condition is true, the src operand is loaded into the dst register.
Otherwise, the dst register is unchanged. The dst and src operands are as-
sumed to be signed integers.

The TMS320C30 provides 20 condition codes that can be used with this
instruction (see Section 11.2 for a list of condition mnemonics, encoding,
and flags). Note that an LDIU (load integer unconditionally) instruction is
useful for loading RO-R7 without affecting the condition flags.

Cycles 1

Status Bits N Unaffected.
z Unaffected.
A\ Unaffected.
(] Unaffected.

UF  Unaffected.
LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.

Example LDIZ R4,R6

Before Instruction:
R4 = 027Ch = 636

R6 = OFE2h = 4,066
LUFLVUFNZVC=0000000

After Instruction:

R4 = 027Ch = 636
R6 = OFE2h = 4,066
LUFLVUFNZVC=0000000
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LDII Load Integer, Interlocked
Syntax LDIl <src>,<dst>
Operation Signal interlocked operation.
src = dst
Operands src general addressing modes (G):
0 1 direct
1 0 indirect
dst register (Rn, 0 < n < 27)
Encoding
31 2423 1615 87 0
0 00|01 000 1} G dst src
Description  The src operand is loaded into the dst register. An interlocked operation is
signaled over XFO and XF1. The src and dst operands are assumed to be
signed integers. Note that only the direct and indirect modes are allowed.
Refer to Section 7.3 for detailed description.
Cycles 1 if XF = 0 (see Section 7.3)

Status Bits

Mode Bit

Example
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N 1 if a negative result is generated,0 otherwise.
z 1 if a zero result is generated, O otherwise.

\' 0]

C Unaffected.

UF 0

LV Unaffected
LUF Unaffected.

OVM Operation not affected by OVM.

LDII @985Fh,R3

Before Instruction:

DP = 80

R3 = 0Oh

Data at 80985Fh = ODCh
LUFLVUFNZVC=0000000

After Instruction:

DP = 80

R3 = ODCh

Data at 80985Fh = ODCh
LUFLVUFNZVC=0000000




Parallel LDI and LDI LDI||LDI

Syntax LDl <src2>,<dst2>
]| LDl <sre?>,<dst1>
Operation src2 -» dst2
|| src1 — dst1

Operands srel indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1,0 < n1 < 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst2 register (Rn2,0 < n2 < 7)

Encoding

31 24 23 1615 87 0
i 4 1 1 1 T i ] 1 1 ] 1] T 1 l T 1 T T 1 T T T 1 T

1110 0 01 1| dst2 dst1 10 0 O srcl src2

Description  Two integer loads are performed in parallel. A warning is issued by the
assembler if the LDIs load the same register. The result is that of LDI
<src2>,<dst2>.

Cycles 1

Status Bits N Unaffected.
z Unaffected.
Vv Unaffected.
(o4 Unaffected.

UF Unaffected.
LV Unaffected.
LUF Unaffected.

Mode Bit OVM Operation not affected by OVM.

Example LDI *-AR1(1),R7
|| LDI *AR7++(IRO),R1

Before Instruction:

AR1 = 809826h

R7 = Oh

AR7 = 8098C8h

IRO = 10h

R1 = Oh

Data at 809825h = OFAh = 250

Data at 8098C8h = 2EEh = 750
LUFLVUFNZVC=0000000

After Instruction:

AR1 = 809826h

R7 = OFAh = 250

AR7 = 8098D8h

IRO = 10h

R1 = 02EEh = 750

Data at 809825h = OFAh = 250

Data at 8098C8h = 2EEh = 750
LUFLVUFNZVC=0000000
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LDI||STI Parallel LDI and STI
Syntax LDl <src2>,<dst1>
| STl <sre3>,<dst2>
Operation src2 - dstl
|| sre3 - dst2
Operands src2 indirect (disp = 0, 1, IRO, IR1)
dst1 register (Rn1,0 < n1 < 7)
sre3 register (Rn2, 0 < n2 <7)
dst2 indirect (disp = 0, 1, IR0, IR1)
Encoding
31 2423 1615 87 0
1101 1 0 1} dst1 |0 O O| src3 dst2 src2
Description  An integer load and an integer store are performed in parallel.
If src2 and dst2 point to the same location, src2 is read before the write to
dst2.
Cycles 1

Status Bits

Mode Bit
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N Unaffected.
z Unaffected.
\" Unaffected.
(o Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.



Parallel LDI and ST LDI||STI

Example

LDI *-AR1(1),R2
|| STI R7,*AR5++(IR0)

Before Instruction:

AR1 = 8098E7h

R2 = 0Oh

R7 = 35h = 53
AR5 = 80982Ch
IRO = 8h

Data at 8098E6h = ODCh = 220
Data at 80982Ch = Oh
LUFLVUFNZVC=0000000

After Instruction:

AR1 = 8098E7h
R2 = ODCh = 220

R7 = 36h = 53
AR5 = 809834h
IRO = 8h

Data at 8098E6h = ODCh = 220
Data at 80982Ch = 35h = 53
LUFLVUFNZVC=0000000
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LDM

Load Floating-Point Mantissa

Syntax LDM <src>,<dst>
Operation src(man) ~ dst(man)
Operands src general addressing modes (G):
register (Rn, 0 < n < 7)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n 5 7)
Encoding
31 2423 1615 87 0
0 00|01 0010] G dst src
Description  The mantissa field of the src operand is loaded into the mantissa field of the
dst register. The dst exponent field is not modified. The src and dst op-
erands are assumed to be floating-point numbers. If immediate addressing
mode is used, bits 15 - 12 of the instruction word are forced to O by the
assembler.
Cycles 1
Status Bits N Unaffected.
z Unaffected.
\"/ Unaffected.

Mode Bit

Example
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C Unaffected.
UF  Unaffected.
Lv Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.
LDM 156.75,R2 (156.75 = 071CCO0000h)

Before Instruction:

R2 = Oh .
LUFLVUFNZVC=0000000

After Instruction:

R2 = 001CCO0000h = 1.22460938e+00
LUFLVUFNZVC=0000000



Logical Shift LSH

Syntax LSH <count>,<dst>
Operation If count > 0:
dst << count - dst
Else:
dst >> |count| — dst
Operands src general addressing modes (G):
0 0 register (Rn, 0 £ n < 27)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n < 27)
Encoding
31 24 23 1615 87 (4]
i ] T T 1] 1 T T 1 ] 1 1] T ] T 1 T 1 ¥ T ] T T I 1 1 1
001j0 1 0011 G dst count
Description  The seven least-significant bits of the count operand are used to generate
the two’s-complement shift count. If the count operand is greater than zero,
the dst operand is left- shifted by the value of the count operand. Low-
order bits shifted in are zero-filled, and high-order bits are shifted out
through the C (carry) bit.
Logical left-shift:
C+dst<0
If the count operand is less than zero, the dst is right-shifted by the absolute
value of the count operand. The high-order bits of the dst operand are
zero-filled as shifted to the right. Low-order bits are shifted out through the
C (carry) bit.
Logical right-shift:
0-dst—>C
If the count operand is 0, no shift is performed and the C (carry) bit is set
to 0. The count operand is assumed to be a signed integer and the dst
operand is assumed to be an unsigned integer.
Cycles 1
Status Bits N MSB of the output.
4 1 if a zero output is generated, 0 otherwise.
v 0]

Mode Bit

C Set to the value of the last bit shifted out. O for a shift count of 0.
Unaffected if dst is not RO-R7.

UF O

Lv Unaffected.

LUF Unaffected.

OVM Operation not affected by OVM.
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LSH

Logical Shift

Example

Example
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LSH R4,R7

Before Instruction:

R4 = 018h = 24
R7 = 02ACh
LUFLVUFNZVC=0000000

After Instruction:

R4 = 018h = 24
R7 = 0AC000000h
LUFLVUFNZVC=0001010

LSH *-AR5(IR1),R5

Before Instruction:

AR5 = 809908h

IRO = 4h

R5 = 0012C00000h

Data at 809904h = OFFFFFFF4h = -12
LUFLVUFNZVC=0000000

After Instruction:

AR5 = 809908h

IRO = 4h

R5 = 0000012C00h

Data at 809904h = OFFFFFFF4h =-12
LUFLVUFNZVC=0000000




Logical Shift, 3-Operand LSH3

Syntax LSH3 <count>,<src>,<dst>
Operation If count > 0:
src << count — dst
Else:

src >> |count| - dst

Operands src three-operand addressing modes (T):
00 register (Rn1,0 < n < 27)
1 indirect (disp = 0, 1, IRO, IR1)
0 register (Rn1,0 < n1 < 26)
indirect (disp = 0, 1, IR0, IR1)

1
count three-operand addressing modes (T):
0 0 register (Rn2, 0 < n2 < 27)
01 register (Rn2, 0 < n2 < 27)
10 indirect (disp = 0, 1, IRO, IR1)
11 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 < n < 27)

__0

Encoding

31 24 23 1615 87 0
LA 1) 1 1] 1 ] ¥ L 1 L L T 1] T ) 1 1) I T 1] 1 T 1
001001000} T , dst src count

Description  The seven least-significant bits of the count operand are used to generate
the two’s-complement shift count.

If the count operand is greater than zero, the dst operand is left-shifted by
the value of the count operand. Low-order bits shifted in are zero-filled,
and high-order bits are shifted out through the C (carry) bit.
Logical left-shift:

Cesre+0
If the count operand is less than zero, the src operand is right-shifted by the

absolute value of the count operand. The high-order bits of the dst operand
are zero-filled as shifted to the right. Low-order bits are shifted out through

the C (carry) bit. '
Logical right-shift:
O—-src>C

If the count operand is 0, no shift is performed and the C (carry) bit is set
to 0. The count operand is assumed to be a signed integer. The sr¢ and
dst operands are assumed to be unsigned integers.

Cycles 1
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LSH3

Logical Shift, 3-Operand

Status Bits

Mode Bit

Example

Example

11-94

N MSB of the output.

z 1 if a zero output is generated, O otherwise.

\' 0

C Set to the value of the last bit shifted out. O for a shift count of 0.
Unaffected if dst is not RO-R7.

UF ©0

LV Unaffected.

LUF Unaffected.

OVM Operation not affected by OVM.

LSH3 R4,R7,R2

Before Instruction:

R4 = 018h = 24
R7 = 02ACh
R2 = Oh

LUFLVUFNZVC=0000000

After Instruction:

R4 = 018h = 24

R7 = 02ACh

R2 = 0AC000000h
LUFLVUFNZVC=0001010

LSH3 *-AR4(IR1)R5,R3

Before Instruction:
AR4 = 809908h

IR1 = 4h
R5 = 012C00000h
R3 = 0Oh

Data at 809904h = OFFFFFFF4h = -12
LUFLVUFNZVC=0000000

After Instruction:

AR4 = 809908h

IRT = 4h

R5 = 012C00000h

R3 = 0000012C00h

Data at 809904h = OFFFFFFF4h = -12
LUFLVUFNZVC=0000000




Parallel LSH3 and STI LSH3||STI

Syntax LSH3 <count>,<src2>,<dst1>
]| STI <sre3>,<dst2>
Operation If count > O:
src2 << count — dst1
Else:
src2 >> |count| = dstl
|| sre3 = dst2
Operands count register (Rn1,0 < n1 <7)
sre1 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn3,0 < n3 £ 7)
src2 register (Rn4, 0 < n4 <7)
dst2 indirect (disp = 0, 1, IR0, IR1)
Encoding
31 2423 1615 87 0
110 1 1 1 0] dst1 count src3 dst2 src2

Description

Cycles

The seven least-significant bits of the count operand are used to generate
the two’s-complement shift count.

If the count operand is greater than zero, the dst operand is left-shifted by
the value of the count operand. Low- order bits shifted in are zero-filled
and high-order bits are shifted out through the C (carry) bit.

Logical left-shift:

C«<dst2<0
If the count operand is less than zero, the dst operand is right-shifted by the
absolute value of the count operand. The high-order bits of the dst operand
are zero filled as shifted to the right. Low-order bits are shifted out through
the C (carry bit).
Logical right-shift:

0-dst2-C
If the count operand is O, no shift is performed and the carry bit is set to 0.

The count operand is assumed to be a 7-bit signed integer and the src2 and
dst7 operands are assumed to be unsigned integers. All registers are read
at the beginning and loaded at the end of the execute cycle. This means
that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (LSH3) writes to the same register,
then STI accepts as input the contents of the register before it is modified
by the LSH3.

If src2 and dst2 point to the same location, sr¢2 is read before the write to
dst2.

1
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LSH3||STI

Parallel LSH3 and STI

Status Bits

Mode Bit

Example
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N MSB of the output.
Y4 1 if a zero output is generated, O otherwise.
\" 0

C Set to the value of the last bit shifted out. O for a shift count of O.
UF O

LV Unaffected.

LUF Unaffected.

OVM Operation not affected by OVM.

LSH3 R2,*++AR3(1),RO
|| STI R4,*-AR3

Before Instruction:

R2 =18h = 24
AR3 = 8098C2h
RO = Oh

R4 = ODCh = 220

AR3 = 8098A3h

Data at 8098C3h = OACh

Data at 8098A2h = Oh
LUFLVUFNZVC=0000000

After Instruction:

R2 =18h = 24

AR3 = 8098C3h

RO = OAC000000h

R4 = ODCh = 220

AR3 = 8098A3h

Data at 8098C3h = OACh

Data at 8098A2h = ODCh = 220
LUFLVUFNZVC=0001000




Parallel LSH3 and STI LSH3[|STI

Example

LSH3 R7,*AR2--(1),R2
|| STI RO,*+ARO(1)

Before Instruction:

R7 = OFFFFFFF4h = -12

AR2 = 809863h

R2 = 0Oh

RO = 12Ch = 300

ARO = 8098B7h

Data at 809863h = 2C000000h

Data at 8098B8h = Oh
LUFLVUFNZVC=0000000

After Instruction:

R7 = OFFFFFFF4h = -12

AR2 = 809862h

R2 = 2C000h

RO = 12Ch = 300

ARO = 8098B7h

Data at 809863h = 2C000000h

Data at 8098B8h = 12Ch = 300
LUFLVUFNZVC=0000000
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MPYF Multipy Floating-Point

Syntax MPYF <src>,<dst>

Operation dst x src = dst

Operands src general addressing modes (G):
00 register (Rn,0 < n <7)
01 direct
1 0 indirect

11 immediate
dst register (Rn, 0 < n € 7)

Encoding
31 24 23 1615 87 0
1 T 1 T T L T T L v T L T L 1 T T T T T T 1 T
00001 01T00| G dst src

Description  The product of the dst and src operands is loaded into the dst register. The
src operand is assumed to be a single-precision floating-point number, and
the dst operand is an extended-precision floating-point number.

Cycles 1
Status Bits N 1 if a negative resuit is generated, O otherwise.
¥4 1 if a zero result is generated, O otherwise.
\"/ 1 if a floating-point is overflow occurs, 0 otherwise.

(o] Unaffected.

UF 1 if a floating-point underflow occurs, O otherwise.

LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

Mode Bit OVM Operation not affected by OVM.

Example MPYF RO,R2

Before Instruction:

RO = 070C800000h = 1.4050e+02
R2 = 034C200000h = 1.275781256e+01
LUFLVUFNZVC=0000000

After Instruction:

RO = 070C800000h = 1.4050e+02
R2 = 0A600F2000h = 1.79247266e+03
LUFLVUFNZVC=0000000
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Multiply Floating-Point, 3-Operand MPYF3

Syntax MPYF3 <src2>,<src1>,<dst>
Operation srcl x sre2 = dst
Operands src1 three-operand addressing modes (T):
00 register (Rn1,0 < n1 < 7)
01 indirect (disp = 0, 1, IRO, IR1)
10 register (Rn1,0 s n1 <£7)
11 indirect (disp = 0, 1, IRO, IR1)
src2 three-operand addressing modes (T):
00 register (Rn2,0 < n2 <7)
01 register (Rn2,0 < n2 < 7)
1 0 indirect (disp = 0, 1, IR0, IR1)
11 indirect (disp = 0, 1, IRO, IR1)
dst register (Rn, 0 < n < 7)
Encoding
31 2423 1615 87 0
00 1ij0 0 001| T dst srct src2
Description The product of the dst7 and src2 operands is loaded into the dst register.
The sre? and src2 operands are assumed to be single-precision floating-
point numbers, and the dst operand is an extended-precision floating-point
number.
Cycles

Status Bits

Mode Bit

1 if a negative result is generated, 0 otherwise.

1 if a zero result is generated, 0 otherwise.

1 if a floating-point overflow occurs, O otherwise.
Unaffected.

UF 1 if a floating-point underflow occurs, 0 otherwise.

LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

OVM Operation not affected by OVM.

O<NZz -
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MPYF3

Multiply Floating-Point, 3-Operand

Example

Example
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MPYF3 RO,R7,R1

Before Instruction:

RO = 057B400000h = 6.281250e+01

R7 = 0733C00000h = 1.79750e+02

R1 = 0Oh
LUFLVUFNZVC=0000000

After Instruction:

RO = 057B400000h = 6.281250e+01

R7 = 0733C00000h = 1.79750e+02

R1 = OD306A3000h = 1.12905469e+04
LUFLVUFNZVC=0000000

MPYF3 *+AR2(IRO),R7,R2
or
MPYF3 R7,*+AR2(IRO),R2

Before Instruction:

AR2 = 809800h

IRO = 12Ah

R7 = 057B400000h = 6.281250e+01

R2 = Oh

Data at 80992Ah = 70C8000h = 1.4050e+02
LUFLVUFNZVC=0000000

After Instruction:

AR2 = 809800h

IR0 = 12Ah

R7 = 057B400000h = 6.281250e+01

R2 = ODO9E4AQ00h = 8.82515625e+03
Data at 80992Ah = 70C8000h = 1.4050e+02
LUFLVUFNZVC=0000000




Parallel MPYF3 and ADDF3 MPYF3||ADDF3

Syntax MPYF3 <srcA>,<srcB>,<dst1>
|| ADDF3 <sreC>,<srcD>,<dst2>
Operation SrcA x srcB = dstl

|| sreC + sreD — dst2

Operands
SrcA
srcB | Any two indirect (disp = 0,1,IR0,IR1)
sreC | Any two register (0 < ARn < 7)
srceD
dst1 register (d7):
0 =RO
1=R1
dst2 register (d2):
0=R2
1=R3
srel register (Rn,0 < n<g?7)
src2 register (Rn,0sn<7
src3 indirect (disp = 0, 1, IRO, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)
P parallel addressing modes (0 < P < 3)
OPERATION
00 src3 x sre4, srel + src2
01 src3 x srcl, sred + src2
10 srcT x src2, src3 + src4
11 sre3 x srel, src2 + sre4
Encoding
31 24 23 1615 87 0
1 1 T 1 1 1 1 1 1 { ¥ { 2l 1 T T L i 1 ) LS
1 0{0 0 0 0| P |[d1|d2| srcl src2 src3 srcd

Description A floating-point multiplication and a floating-point addition are performed
in parallel. All registers are read at the beginning and loaded at the end of
the execute cycle. This means that if one of the parallel operations (MPYF3)
reads from a register and the operation being performed in parallel
(ADDF3) writes to the same register, then MPYF3 accepts as input the
contents of the register before it is modified by the ADDF3.

Any combination of addressing modes may be coded for the four possible
source operands as long as the two are coded as indirect and two are reg-
ister. The assignment of the source operands srcA-srcD to the src7-src4
fields varies depending on the combination of addressing modes used, and
the P field is encoded accordingly. The assembler may, when not signif-
icant, change the order of operands in commutative operations, in order to
simplify processing.
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MPYF3||ADDF3 Parallel MPYF3 and ADDF3

Cycles
Status Bits

Mode Bit

Example
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If src2 and dst2 point to the same location, src2 is read before the write to
dst2.

1

N 0

z 0

\") 1 if a floating-point overflow occurs, 0 otherwise.

C Unaffected.

UF 1 if a floating-point underflow occurs, O otherwise.

LV 1 if a floating-point overflow occurs, O unchanged otherwise.
LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise.

OVM Operation not affected by OVM.

MPYF3 *AR5++(1),*--AR1(IRO),RO
|| ADDF3 R5,R7,R3

Before Instruction:

AR5 = 8098C5h

AR1 = 8098A8h

IRO = 4h

RO = Oh

R5 = 0733C00000h = 1.79750e+02

R7 = 070C800000h = 1.4050e+02

R3 = Oh

Data at 8098C5h = 34C0000h = 1.2750e+01
Data at 8098A4h = 1110000h = 2.2500e+00
LUFLVUFNZVC=0000000

After Instruction:

AR5 = 8098C6h

AR1 = 8098A4h

IRO = 4h

RO = 0467180000h = 2.88867188e+01

R5 = 0733C00000h = 1.79750e+02

R7 = 070C800000h = 1.4050e+02

R3 = 0820200000h = 3.20250e+02

Data at 8098C5h = 34C0000h = 1.2750e+01
Data at 8098A4h = 1110000h = 2.2500e+00
LUFLVUFNZVC=0000000




Parallel MPYF3 and STF MPYF3||STF

Syntax MPYF3 <src2>,<srcl1>,<dst1>
|| STF <sre3>,<dst2>
Operation src] x src2— dstl
[| sre3 = dst2
Operands srcl register (Rn1,0 < n1 < 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dstl1 register (Rn3, 0 < n3 < 7)
src3 register (Rn4, 0 < nd <7)
dst2 indirect (disp = 0, 1, IRO, IR1)
Encoding
31 2423 1615 87 0
11{0 1 1 1| dstl srcl src3 dst2 src2
Description A floating-point multiplication and a floating-point store are performed in
parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (MPYF3)
reads from a register and the operation being performed in parallel (STF)
writes to the same register, then MPYF3 accepts as input the contents of
the register before it is modified by the STF.
If src2 and dst2 point to the same location, then src2 is read before the write
to dst2.
Cycles 1
Status Bits N 1 if a negative result is generated, 0 otherwise.
z 1 if a zero result is generated, O otherwise.
\"/ 1 if a floating-point overflow occurs, O otherwise.

Mode Bit

C Unaffected.

UF 1 if a floating-point underflow occurs, 0 otherwise.

LV 1 if a floating-point overflow occurs, 0 unchanged otherwise.
LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise.

OVM Operation not affected by OVM.
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MPYF3||STF Parallel MPYF3 and STF

Example

11-104

MPYF3 *-AR2(1l),R7,R0O
|| STF R3,*AR0--(IRO)

Before Instruction:

AR2 = 80982Bh

R7 = 057B400000h = 6.281250e+01

RO = Oh

R3 = 086B280000h = 4.7031250e+02

ARO = 809860h

IRO = 8h

Data at 80982Ah = 70C8000h = 1.4050e+02
Data at 809860h = Oh
LUFLVUFNZVC=0000000

After Instruction:

AR2 = 80982Bh

R7 = 0567B400000h = 6.281250e+01

RO = ODO9E4AO00Ch = 8.82515625e+03

R3 = 086B280000h = 4.7031250e+02

ARO = 809858h

IRO = 8h

Data at 80982Ah = 70C8000h = 1.4050e+02

Data at 809860h = 86B280000h = 4.7031250e+02
LUFLVUFNZVC=0000000



Parallel MPYF3 and SUBF3 MPYF3|{SUBF3

Syntax MPYF3 <srcA>,<srcB>,<dst1>
Il SUBF3 <srcC>,<srcD>,<dst2>
Operation SrcA x srcB — dst1
|l sreD = sreC — dst2
Operands
SrcA
srcB | Any two indirect (disp = 0,1,IR0,IR1)
sreC | Any two register (0 < ARn < 7)
srceD
dst7 register (d7):
0 =R0
1=R1
dst2 register (d2):
0 =R2
1=R3
srel register (Rn, 0 < n<7)
src2 register (Rn,0 <n <7)
sre3 indirect (disp = 0, 1, IR0, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)
P parallel addressing modes (0 < P < 3)
OPERATION
00 sre3 x src4, srcl ~- src2
01 src3 x srel, srcd - src2
10 srcl x src2, src3 - src4d
1 sre3 x srcl, src2 - src4
Encoding
31 2423 1615 87 0
] T ¥ T T T T 1 T T L L 1 T ¥ T 1] i L) T
1 010 0 0 1{ P |[d1{d2] srcl src2 src3 srcé4
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MPYF3||SUBF3 Parallel MPYF3 and SUBF3

Description

Cycles
Status Bits

Mode Bit

Example
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A floating-point multiplication and a floating-point subtraction are per-
formed in parallel. All registers are read at the beginning and loaded at the
end of the execute cycle. This means that if one of the parallel operations
(MPYF3) reads from a register, and the operation being performed in par-
allel (SUBF3) writes to the same register, then MPYF3 accepts as input the
contents of the register before it is modified by the SUBF3.

Any combination of addressing modes may be coded for the four possible
source operands as long as the two are coded as indirect and two are reg-
ister. The assignment of the source operands srcA-srcD to the src?-src4
fields varies depending on the combination of addressing modes used, and
the P field is encoded accordingly. The assembler may, when not signif-
icant, change the order of operands in commutative operations, in order to
simplify processing.

—_

N 0

z 0]

\" 1 if a floating-point overflow occurs, O otherwise.
C Unaffected.

UF 1 if a floating-point underflow occurs, O otherwise.
LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

OVM Operation not affected by OVM.

MPYF3 R5,*++AR7(IR1),RO
|| SUBF3 R7,*AR3--(1),R2
or
MPYF3 RS5,*++AR7(IR1),R5,R0
{| SUBF3 R7,*AR3--(1),R2

Before Instruction:

R5 = 034C000000h = 1.2750e+01

AR7 = 809904h

IR1 = 8h

RO = Oh

R7 = 0733C00000h = 1.79750e+02

AR3 = 8098B2h

R2 = 0h

Data at 80990Ch = 1110000h = 2.250e+00
Data at 8098B2h = 70C8000h = 1.4050e+02
LUFLVUFNZVC=0000000




Parallel MPYF3 and SUBF3 MPYF3||SUBF3

After Instruction:

R5 = 034C000000h = 1.2750e+01

AR7 = 80990Ch

IR1 = 8h

RO = 0467180000h = 2.88867188e+01

R7 = 0733C00000h = 1.79750e+02

AR3 = 8098B1h

R2 = 05E3000000h = -3.9250e+01

Data at 80990Ch = 1110000h = 2.250e+00
Data at 8098B2h = 70C8000h = 1.4050e+02
LUFILVUFNZVC=0000000
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MPYI

Multiply Integer

Syntax MPYl <sre>,<dst>
Operation dst x src = dst
Operands src general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n g 27)
Encoding
31 2423 1615 87 0
0 0O0j0O10101| G dst src
Description  The product of the dst and src operands is loaded into the dst register. The
src and dst operands when read are assumed to be 24-bit signed integers.
The result is assumed to be a 48-bit signed integer. The output to the dst
register is the 32 least-significant bits of the result.
Integer overflow occurs when any of the most-significant 16 bits of the
48-bit result differs from the most-significant bit of the 32-bit output value.
Cycles 1

Status Bits

Mode Bit

Example
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N 1 if a negative result is generated, O otherwise.

z 1 if a zero result is generated, O otherwise.

Vv 1 if an integer overflow occurs, 0 otherwise.

C Unaffected.

UF 0

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unchanged.

OVM Operation affected by OVM.

MPYI R1,R5

Before Instruction:

R1 = 000033C251h = 3,392,
R5 = 000078B600h = 9 0,
LUF LVUFNZV C=0

081
912
000000O

After Instruction:

R1 = 000033C251h = 3,392,081
R5 = 00E21D9600h = -501,377,536
LUFLVUFNZVC=0101010



Multiply Integer, 3-Operand MPYI3

Syntax MPYI3 <src2>,<src1>,<dst>
Operation srcl x src2 — dst
Operands srcl three-operand addressing modes (T):

0 0 register (Rn1, < n1 < 27)
01 indirect (disp = 0, 1, IRO, IR1)
10 register (Rn1, < n1 < 27)
11 indirect (disp = 0, 1, IRO, IR1)

src2 three-operand addressing modes (T):
0 0 register (Rn2, < n2 < 27)
01 register (Rn2, < n2 < 27)
1 0 indirect (disp = 0, 1, IRQ, IR1)
11 indirect (disp = 0, 1, IRO, IR1)

dst register (Rn, 0 < n < 27)

Encoding
31 2423 1615 87 0
Ll T 1 T T T T T 1 1 1 T 1 1 T T 1 1 T Ll i T 1 i T
001j0 01 010 T dst srcl src2

Description  The product of the src7 and src2 operands is loaded into the dst register.
The src7 and src2 operands are assumed to be 24-bit signed integers. The
result is assumed to be a signed 48-bit integer. The output to the dst reg-
ister is the 32 ieast-significant bits of the result.

Integer overflow occurs when any of the most-significant 16 bits of the
48-bit result differs from the most-significant bit of the 32-bit output value.

Cycles 1
Status Bits N 1 if a negative result is generated, O otherwise.
4 1 if a zero result is generated, O otherwise.
A\ 1 if an integer overflow occurs, 0 otherwise.
C Unaffected.
UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unchanged.

Mode Bit OVM Operation affected by OVM.
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MPYI3

Multiply Integer, 3-Operand

Example

Example
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MPYI3 *AR4,*-AR1(1),R2

Before Instruction:

AR4 = 809850h

AR1 = 8098F3h

R2 = 0h

Data at 809850h = 0ADh = 173

Data at 8098F2h = ODCh = 220
LUFLVUFNZVC=0000000

After Instruction:

AR4 = 809850h

AR1 = 8098F3h

R2 = 094ACh = 38,060

Data at 809850h = 0ADh = 173

Data at 8098F2h = ODCh = 220
LUFLVUFNZVC=0000000

MPYI3 *--AR4(IRO),R2,R7

Before Instruction:

AR4 = 8099F8h

IRO = 8h

R2 = 0C8h = 200

R7 = 0h

Data at 8099F0Oh = 32h
LUFLVUFNZVC

After Instruction:

AR4 = 80399F0h

IRO = 8h

R2 = 0C8h = 200

R7 = 02710h = 10,000

Data at 8099FOh = 32h = 50
LUFLVUFNZVC=0000000

50
00000O0OC




Parallel MPYI3 and ADDI3 MPYI3||ADDI3

Syntax MPYI3 <srcA>,<srcB>,<dst1>
|| ADDI3 <sreC>,<srcD>,<dst2>
Operation SrcA x srcB — dst1
|t sreD + sreC - dst2
Operands
srcA
srcB | Any two indirect (disp = 0,1,IR0,IR1)
srcC | Any two register (0 < ARn < 7)
srcD
dst1 register (d7):
0=RO
1=R1
dst2 register (d2):
0 =R2
1=R3
sreT register (Rn,0 <n <7)
src2 register (Rn,0 <n<7)
sre3 indirect (disp = 0, 1, IRO, IR1)
src4 indirect (disp = 0, 1, IRO, IR1)
P parallel addressing modes (0 < P < 3)
OPERATION
00 sre3 x sre4, srcl + src2
01 sre3 x srel, src4 + sre2
10 srcl x src2, src3 + src4
11 sre3 x srcl, src2 + src4
Encoding

31 2423 1615 87 0
T 1 T i 1
1 00 01 0| P |[d1|d2] srcl src2 src3 srcd
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MPYI3||ADDI3 Parallel MPYI3 and ADDI3

Description

Cycles
Status Bits

Mode Bit

Example
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An integer multiplication and an integer addition are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (MPYI3) reads from
a register and the operation being performed in parallel (ADDI3) writes to
the same register, then MPYI3 accepts as input the contents of the register
before it is modified by the ADDI3.

Any combination of addressing modes may be coded for the four possible
source operands as long as the two are coded as indirect and two are reg-
ister. The assignment of the source operands srcA-srcD to the src7-src4
fields varies depending on the combination of addressing modes used, and
the P field is encoded accordingly. The assembler may, when not signif-
icant, change the order of operands in commutative operations, in order to
simplify processing.

1
N 0

z 0

\" 1 if an integer overflow occurs, 0 otherwise.
C Unaffected.

UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unchanged.

OVM Operation affected by OVM.

MPYI3 R7,R4,RO
|| ADDI3 *-AR3,*AR5--(1),R3

Before Instruction:

R7 =14h = 20
R4 = 64h =100
RO = Oh

AR3 = 80981Fh

AR5 = 80996Eh

R3 = Oh

Data at 80981Eh = OFFFFFFCBh = -53
Data at 80996Eh = 35h = 53
LUFLVUFNZVC=0000000

After Instruction:

R7 = 14h = 20

R4 = 64h = 100

RO = 07D0h = 2000

AR3 = 80981Fh

AR5 = 80996Dh

R3 = 0Oh

Data at 80981Eh = OFFFFFFCBh = -53
Data at 80996Eh = 36h = 53
LUFLVUFNZVC=0000000




Parallel MPYI3 and STI3 MPYI3||STI

Syntax MPYI3 <src2>,<src1>,<dstl1>
|| STI <sre3>,<dst2>
Operation srel x sre2 = dstl
|} sre3 — dst2
Operands src1 register (Rn1,0 < n1 5 7)
sre2 indirect (disp = 0, 1, IRO, IR1)
dst1 register (Rn3,0 £ n3 5 7)
src3 register (Rn4,0 < nd < 7)
dst2 indirect (disp = 0, 1, IRO, IR1)
Encoding
31 2423 1615 87 0
1 1 T 1 T L 1 L T 1 ] T ] L Ll i T ¥ L L 1
111 0 0 0 0] dst1 srcl src3 dst2 src2
Description  An integer multiplication and an integer store are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STI) reads from a
register and the operation being performed in parallel (MPY13) writes to the
same register, then ST| accepts as input the contents of the register before
it is modified by the MPYI3.
If sre2 and dst2 point to the same location, src2 is read before the write to
ast2.
Integer overflow occurs when any of the most-significant 16 bits of the
48-bit result differs from the most-significant bit of the 32-bit output value.
Cycles 1

Status Bits

Mode Bit

N 1 if a negative result is generated, 0 otherwise.
2 1 if a zero result is generated, 0 otherwise.

\"/ 1 if an integer overflow occurs, O otherwise.
C Unaffected.

UF 0

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation affected by OVM.
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MPYI3||STI

Parallel MPYI3 and STI3

Example
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MPYI3 *++ARO

(1) ,RS,R7
|| STI R2,*-AR3(1)

1)
1)
Before Instruction:

ARO = 80995Ah

R6 = 32h = 50

R7 = Oh

R2 = ODCh = 220

AR3 = 80982Fh

Data at 80995Bh = 0C8h = 200

Data at 80982Eh = Oh
LUFLVUFNZVC=0000000

After Instruction:

ARO = 80995Bh

R5 = 32h =50

R7 = 2710h = 10000

R2 = ODCh = 220

AR3 = 80982Fh

Data at 80995Bh = 0C8h = 200

Data at 80982Eh = ODCh = 220
LUFLVUFNZVC=0000000




Parallel MPYI3 and SUBI3

MPYI3||SUBI3

Syntax MPYI3 <srcA>,<srcB>,<dst1>
|| SUBI3 <sreC>,<srcD>,<dst2>
Operation srcA x srcB — dstl
|| sreD - sreC — dst2
Operands
srcA
srcB | Any two indirect (disp = 0,1,IRO,IR1)
srcC | Any two register (0 < ARn < 7)
sreD
dst7 register (d7):
0 =RO
1=R1
dst2 register (d2):
0 =R2
1 =R3
srct register (Rn,0 < n<7)
src2 register (Rn,0 < n<7)
src3 indirect (disp = 0O, 1, IRO, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)
P parallel addressing modes (0 < P < 3)
OPERATION
00 src3 x src4, srcl - src2
01 src3 x srel, srcd —- src2
10 srcl x src2, src3 - srcd
11 sre3 x srel, sre2 - srcd
Encoding
31 2423 1615 87 0
1 1] 1 1 ¥ T 1 1 T Ll Ll 1 1 1 1 1 1 T { 1l 1 1l T
1 0/0 01 1| P |d1|d2] srecl src2 src3 src4
Description  An integer multiplication and an integer subtraction are performed in par-

allel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (MPYI|3)
reads from a register and the operation being performed in parallel (SUBI3)

writes to the same register, then MPYI3 accepts as input the contents of the

register before it is modified by the SUBI3.

Any combination of addressing modes may be coded for the four possible

source operands as long as the two are coded as indirect and two are reg-

ister.

The assignment of the source operands srcA-srcD to the src7-src4

fields varies depending on the combination of addressing modes used, and
the P field is encoded accordingly. The assembler may, when not signif-
icant, change the order of operands in commutative operations, in order to

simplify processing.
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MPYI3||SUBI3 Parallel MPYI3 and SUBI3

Cycles
Status Bits

Mode Bit

Example
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Integer overflow occurs when any of the most-significant 16 bits of the
48-bit result differs from the most-significant bit of the 32-bit output value.

1

N 0

z 0

A\ 1 if an integer overflow occurs, O otherwise.

C Unaffected.

UF 1 if an integer underflow occurs, O otherwise.

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unchanged.

OVM Operation affected by OVM.

MPYI3 R2,*++AR0(1),RO
|| SUBI3 *ARS5--(IR1),R4,R2
or

MPYI3 *++ARO(1),R2,RO
|| SUBI3 *AR5--(IR1l),R4,R2

Before Instruction:

R2 = 32h = 50

ARO = 8098E3h

RO = Oh

AR5 = B099FCh

IR1 = 0Ch

R4 = 07D0Oh = 2000

Data at 8098E4h = 62h = 98

Data at 8099FCh = 4BOh = 1200
LUFLVUFNZVC=0000000

After Instruction:

R2 = 320h = 800

ARO = 8098E4h

RO = 01324h = 4900

AR5 = 8099FOh

IR1 = 0Ch

R4 = 07D0Oh = 2000

Data at 8098E4h = 62h = 98

Data at 8099FCh = 4BOh = 1200
LUFLVUFNZVC=0000000




Negative Integer with Borrow NEGB

Syntax NEGB <src>,<dst>

Operation 0 -src-C = dst

Operands src general addressing modes (G):
0 0 register (Rn, 0 < n < 27)
01 direct
1 0 indirect

11 immediate
dst register (Rn, 0 < n < 27)

Encoding
31 2423 1615 87 0
T T 1 1 1 1 1 . Ll ] 1) 1 L Ll 1 T Ll T T ) T ] T 1 T T T T
0 00j0O1TO0T1T1O0] G dst src

Description  The difference of the 0, src, and C operands is loaded into the dst register.
The dst and src are assumed to be signed integers.

—_

Cycles

Status Bits 1 if a negative result is generated, O otherwise.

1 if a zero result is generated, O otherwise.

1 if an integer overflow occurs, 0 otherwise.

1 if a borrow occurs, 0 otherwise.

UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

Mode Bit OVM Operation affected by OVM.

O<NZ

Example NEGB R5,R7

Before Instruction:

R6 = OFFFFFFCBh = -53
R7 = Oh
LUFLVUFNZVC=0000001

After Instruction:

R5 = OFFFFFFCBh = -53
R7 = 34h =562
LUFLVUFNZVC=0000001
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NEGF Negate Floating-Point

Syntax NEGF <sre>,<dst>

Operation 0 - src — dst

Operands src general addressing modes (G):
00 register (RN, 0 < n<7)
01 direct
10 indirect

11 immediate
dst register (Rn, 0 < n < 7)

Encoding

31 2423 1615 87 0
T T T T T T ] 1 L T T T L L 1) T ] T 1) 1] 1) T T
000|001 0111 G dst src

Description  The difference of the 0 and src operands is loaded into the dst register. The
dst and src operands are assumed to be floating-point numbers.

Cycles 1
Status Bits N 1 if a negative result is generated, O otherwise.
z 1 if a zero result is generated, 0 otherwise.
\"/ 1 if a floating-point overflow occurs, 0 otherwise.

C Unaffected.

UF 1 if a floating-point underflow occurs, O otherwise.

LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

Mode Bit OVM Operation not affected by OVM.

Example NEGF *++AR3(2),R1

Before Instruction:

AR3 = 809800h

R1 = 057B400025h = 6.28125006e+01

Data at 809802h = 70C8000h = 1.4050e+02
LUFLVUFNZVC=0000000

After Instruction:

AR3 = 809802h

R1 = 07F3800000h = -1.4050e+02

Data at 809802h = 70C8000h = 1.4050e+02
LUFLVUFNZVC=0001000
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Parallel NEGF and STF NEGF||STF

Syntax NEGF <src2>,<dst7>
|| STF <src3>,<dst2>
Operation 0 - src2 - dst1
|l sre3 = dst2

Operands sre2 indirect (disp = 0,
dst? register (Rn1, 0

1. IRO, IR1)

<snt £7)
src3 register (Rn2, 0 < n2
0,1

<7)
dst2 indirect (disp = , IRO, IR1)
Encoding
31 2423 1615 87 0
1 I1 1 ‘0 I0 l0 I1 ést% 0 l0 Y0 ;rcé o ldsltZl o o Isrlc2 S

Description A floating-point negation and a floating-point store are performed in par-
allel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (STF) reads
from a register and the operation being performed in parallel (NEGF) writes
to the same register, then STF accepts as input the contents of the register
before it is modified by the NEGF.

If src2 and dst2 point to the same location, src2 is read before the write to

dst2.
Cycles 1
Status Bits N 1 if a negative result is generated, 0 otherwise.
z 1 if a zero result is generated, 0 otherwise.
\" 1 if a floating-point overflow occurs, O otherwise.
C Unaffected.

UF 1 if a floating-point underflow occurs, 0 otherwise.
LV 1 if a floating-point overflow occurs, unchanged otherwise.
LUF 1 if a floating-point underflow occurs, unchanged otherwise.

Mode Bit OVM Operation not affected by OVM.
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NEGF||STF

Parallel NEGF and STF

Example
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NEGF *AR4--(1),R7
|| STF R2,*++AR5(1)

Before Instruction:

AR4 = 8098E1h

R7 = Oh

R2 = 0733C00000h = 1.79750e+02

AR5 = 809803h

Data at 8098E1h = 57B400000h = 6.281250e+01
Data at 809804h = Oh
LUFLVUFNZVC=0000000

After Instruction:

AR4 = 8098EOh

R7 = 0584C00000h = -6.281250e+01

R2 = 0733C00000h = 1.79750e+02

AR5 = 809804h

Data at 8098E1h = 57B4000h = 6.281250e+01
Data at 809804h = 733C000h = 1.79750e+02
LUFILVUFNZVC=0001000




Negate Integer NEGI

Syntax NEGI <src>,<dst>
Operation 0 - src - dst
Operands src general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
1 0 indirect
11 immediate
dst register (Rn, 0 < n < 27)
Encoding
31 24 23 1615 87 0
T T T 1 T T Ll I 1 L 1 Ll T 1 ¥ L T 1 1) Ll T T T
0 0 0j0 1 0 00| G dst src
Description  The difference of the 0 and src operands is loaded into the dst register. The
dst and src operands are assumed to be signed integers.
Cycles 1

Status Bits

Mode Bit

Example

1 if a negative result is generated, 0 otherwise.
1 if a zero result is generated, O otherwise.
Vv 1 if an integer overflow occurs, 0 otherwise.
Cc 1 if a borrow occurs, 0 otherwise.

UF O

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation affected by OVM.

NEGI 174,R5 (174 = OAEh)

Before Instruction:

R56 = O0DCh = 220
LUFLVUFNZVC=0000000

After Instruction:

R6 = OFFFFFF52 = -174
LUFLVUFNZVC=0001001
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NEGIH||STI

Parallel NEGI and STI

Syntax NEGI <src2>,<dst1>
|| STI <sre3>,<dst2>
Operation 0 - src2 = dst1
|| sre3 = dst2
Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1,0 < n1 < 7)
src3 register (Rn2,0 < n2 < 7)
dst2 indirect (disp = 0, 1, IR0, IR1)
Encoding
31 2423 1615 87 0
11{1 0 0 1 0| dst1 |0 O O] sre3 dst2 src2

Description

An integer negation and an integer store are performed in parallel. All reg-
isters are read at the beginning and loaded at the end of the execute cycle.

~ This means that if one of the paralle! operations (STI) reads from a register

Cycles
Status Bits

Mode Bit
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and the operation being performed in paraliel (NEGI) writes to the same
register, then STI accepts as input the contents of the register before it is
modified by the NEGI.

If src2 and dst2 point to the same location, src2 is read before the write to
dst2.

1

N 1 if a negative result is generated, 0 otherwise.
r4 1 if a zero result is generated, O otherwise.

\" 1 if an integer overflow occurs, 0 otherwise.

C 1 if a borrow occurs, 0 otherwise.

UF 0

LV 1 if an integer overflow occurs, unchanged otherwise.
LUF Unaffected.

OVM Operation affected by OVM.



Parallel NEGI and STI NEGH|STI

Example

NEGI *-AR3,R2
|| STI R2,*AR1l++

Before Instruction:

AR3 = 80982Fh

R2 =18h = 25

AR1 = 8098A5h

Data at 80982Eh = ODCh = 220

Data at 8098A5h = Oh
LUFLVUFNZVC=0000000

After Instruction:

AR3 = 80982Fh

R2 = OFFFFFF24h = -220

AR1 = 8098A6h

Data at 80982Eh = ODCh = 220

Data at 8098A5h = 19h = 25
LUFLVUFNZVC=0001001
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NOP No Operation
Syntax NOP <src>
Operation No ALU or multiplier operations.
ARn is modified if src is specified in indirect mode.
Operands src general addressing modes (G):
0 O register (no operation)
1 0 indirect (modify ARn, 0 < n <£7)
Encoding
31 24 23 1615 87 0
] L T L L] L] 1 1 L) T i ) ¥ T 1 T T T 1 L 1 1 T L
00O0j01T1001, G|OOOOO Sre
Description  If the src operand is specified in the indirect mode, the specified addressing
operation is performed and a dummy memory read occurs. {f the src oper-
and is omitted, no operation is performed.
Cycles 1

Status Bits

Mode Bit

Example

Example
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N Unaffected.
Y4 Unaffected.
Vv Unaffected.
C Unaffected.
UF  Unaffected.
LV Unaffected.
LUF Unaffected.

OVM Operation not affected by OVM.
NOP

Before Instruction:
PC = 3Ah

After Instruction:
PC = 3Bh

NOP *AR3--(1)

Before Instruction:
PC = bh

AR3 = 809900h
After Instruction:

PC = 6h
AR3 = 80898FFh




Normalize NORM
Syntax NORM <sre>,<dst>
Operation norm (src) = dst
Operands src general addressing modes (G):
00 register (Rn,0 s n <s7)
01 direct
10 indirect
11 immediate
Encoding
31 2423 1615 87 (4]
L 1 T T ) 1 1 t L L L L ] 1 T T 1 ] T ] 1] 1) 1 T T 1 1]
0 0 0]0 1 010] G dst src
Description The src operand is assumed to be an unnormalized floating-point number,
i.e., the implied bit is set equal to the sign bit. The dst is set equal to the
normalized src operand with the implied bit removed. The dst operand ex-
ponent is set to the src operand exponent minus the size of the left-shift
necessary to normalize the src. The dst operand is assumed to be a nor-
malized floating-point number.
If src(exp) = -128 and src(man) = 0, then dst = 0,Z =1, and UF = 0. If
src(exp) = -128 and src(man) # 0, then dst = 0, Z = 0, and UF = 1. For
all other cases of the src, if a floating-point underflow occurs, then
dst(man) is forced to O and dst(exp) = -128. If src(man) = 0, then
dst(man) = 0 and dst(exp) = -128. Refer to Section 5.6.
Cycles 1

Status Bits

Mode Bit

Example

N 1 if a negative result is generated, O otherwise.
Y4 1 if a zero result is generated, O otherwise.
\J 0

(o] Unaffected.

UF 1 if a floating-point underflow occurs, 0 otherwise.

LV  Unaffected.

LUF 1 if a floating-point underflow occurs, unchanged otherwise.

OVM Operation not affected by OVM.

NORM R1,R2

Before Instruction:

R1 = 0400003AF5h
R2 = 070C800000h
LUFLVUFNZVC=0000000

After Instruction:

R1 = 0400003AF5h
R2 = F26BD40000h = 1.12451613e-04
LUFLVUFNZVC=0000000
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NOT

Bitwise Logical-Complement

Syntax NOT <sre>,<dst>
Operation ~src — dst
Operands src general addressing modes (G):
00 register (Rn, 0 < n < 27)
01 direct
10 indirect
11 immediate
dst register (Rn, 0 < n < 27)
Encoding
31 24 23 1615 87 0
L i T T T 1 4 i T 1 L T T T 1 1 T T L
0000 1 011} G dst src
Description  The bitwise logical-complement of the src operand is l